Walter F, Gräff D, Lindner F, Paitz P, Köpfli M, Chmiel M, Fichtner A
Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Switzerland.
Institute for Geophysics, ETH Zürich, Switzerland.
Nat Commun. 2020 May 15;11(1):2436. doi: 10.1038/s41467-020-15824-6.
Records of Alpine microseismicity are a powerful tool to study landscape-shaping processes and warn against hazardous mass movements. Unfortunately, seismic sensor coverage in Alpine regions is typically insufficient. Here we show that distributed acoustic sensing (DAS) bridges critical observational gaps of seismogenic processes in Alpine terrain. Dynamic strain measurements in a 1 km long fiber optic cable on a glacier surface produce high-quality seismograms related to glacier flow and nearby rock falls. The nearly 500 cable channels precisely locate a series of glacier stick-slip events (within 20-40 m) and reveal seismic phases from which thickness and material properties of the glacier and its bed can be derived. As seismic measurements can be acquired with fiber optic cables that are easy to transport, install and couple to the ground, our study demonstrates the potential of DAS technology for seismic monitoring of glacier dynamics and natural hazards.
阿尔卑斯山微地震活动记录是研究地貌塑造过程和预警危险大规模运动的有力工具。不幸的是,阿尔卑斯地区的地震传感器覆盖范围通常不足。在此我们表明,分布式声学传感(DAS)填补了阿尔卑斯地形中地震成因过程的关键观测空白。在冰川表面一条1公里长的光纤电缆上进行的动态应变测量产生了与冰川流动和附近岩石崩塌相关的高质量地震图。近500个电缆通道精确地定位了一系列冰川粘滑事件(在20 - 40米范围内),并揭示了能从中推导出冰川及其底部厚度和物质属性的地震相。由于可以使用易于运输、安装并与地面耦合的光纤电缆进行地震测量,我们的研究展示了DAS技术在监测冰川动力学和自然灾害地震方面的潜力。