State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
Cell Mol Immunol. 2020 Jun;17(6):621-630. doi: 10.1038/s41423-020-0458-z. Epub 2020 May 15.
Coronavirus disease 2019 (COVID-19), caused by the novel human coronavirus SARS-CoV-2, is currently a major threat to public health worldwide. The viral spike protein binds the host receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD), and thus is believed to be a major target to block viral entry. Both SARS-CoV-2 and SARS-CoV share this mechanism. Here we functionally analyzed the key amino acid residues located within receptor binding motif of RBD that may interact with human ACE2 and available neutralizing antibodies. The in vivo experiments showed that immunization with either the SARS-CoV RBD or SARS-CoV-2 RBD was able to induce strong clade-specific neutralizing antibodies in mice; however, the cross-neutralizing activity was much weaker, indicating that there are distinct antigenic features in the RBDs of the two viruses. This finding was confirmed with the available neutralizing monoclonal antibodies against SARS-CoV or SARS-CoV-2. It is worth noting that a newly developed SARS-CoV-2 human antibody, HA001, was able to neutralize SARS-CoV-2, but failed to recognize SARS-CoV. Moreover, the potential epitope residues of HA001 were identified as A475 and F486 in the SARS-CoV-2 RBD, representing new binding sites for neutralizing antibodies. Overall, our study has revealed the presence of different key epitopes between SARS-CoV and SARS-CoV-2, which indicates the necessity to develop new prophylactic vaccine and antibody drugs for specific control of the COVID-19 pandemic although the available agents obtained from the SARS-CoV study are unneglectable.
新型冠状病毒病(COVID-19)由新型人类冠状病毒 SARS-CoV-2 引起,目前是全球公共卫生的主要威胁。病毒刺突蛋白通过受体结合域(RBD)与宿主受体血管紧张素转换酶 2(ACE2)结合,因此被认为是阻止病毒进入的主要靶点。SARS-CoV-2 和 SARS-CoV 都具有这种机制。在这里,我们对 RBD 中的受体结合基序内可能与人类 ACE2 和可用中和抗体相互作用的关键氨基酸残基进行了功能分析。体内实验表明,用 SARS-CoV RBD 或 SARS-CoV-2 RBD 免疫均可在小鼠中诱导强烈的谱系特异性中和抗体;然而,交叉中和活性要弱得多,表明这两种病毒的 RBD 具有明显不同的抗原特征。这一发现得到了针对 SARS-CoV 或 SARS-CoV-2 的可用中和单克隆抗体的证实。值得注意的是,一种新开发的 SARS-CoV-2 人源抗体 HA001 能够中和 SARS-CoV-2,但不能识别 SARS-CoV。此外,HA001 的潜在表位残基被鉴定为 SARS-CoV-2 RBD 中的 A475 和 F486,代表了中和抗体的新结合位点。总体而言,我们的研究揭示了 SARS-CoV 和 SARS-CoV-2 之间存在不同的关键表位,这表明尽管 SARS-CoV 研究中获得的现有药物不可忽视,但有必要开发针对 COVID-19 大流行的新型预防性疫苗和抗体药物。