Suppr超能文献

从荷斯坦奶牛初产牛的视角出发,利用基于群体管理的测试日混合模型预测牛奶中红外光谱。

Predicting milk mid-infrared spectra from first-parity Holstein cows using a test-day mixed model with the perspective of herd management.

机构信息

National Fund for Scientific Research (FRS-FNRS), Brussels 1000, Belgium; TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium.

TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium.

出版信息

J Dairy Sci. 2020 Jul;103(7):6258-6270. doi: 10.3168/jds.2019-17717. Epub 2020 May 14.

Abstract

The use of test-day models to model milk mid-infrared (MIR) spectra for genetic purposes has already been explored; however, little attention has been given to their use to predict milk MIR spectra for management purposes. The aim of this paper was to study the ability of a test-day mixed model to predict milk MIR spectra for management purposes. A data set containing 467,496 test-day observations from 53,781 Holstein dairy cows in first lactation was used for model building. Principal component analysis was implemented on the selected 311 MIR spectral wavenumbers to reduce the number of traits for modeling; 12 principal components (PC) were retained, explaining approximately 96% of the total spectral variation. Each of the retained PC was modeled using a single trait test-day mixed model. The model solutions were used to compute the predicted scores of each PC, followed by a back-transformation to obtain the 311 predicted MIR spectral wavenumbers. Four new data sets, containing altogether 122,032 records, were used to test the ability of the model to predict milk MIR spectra in 4 distinct scenarios with different levels of information about the cows. The average correlation between observed and predicted values of each spectral wavenumber was 0.85 for the modeling data set and ranged from 0.36 to 0.62 for the scenarios. Correlations between milk fat, protein, and lactose contents predicted from the observed spectra and from the modeled spectra ranged from 0.83 to 0.89 for the modeling set and from 0.32 to 0.73 for the scenarios. Our results demonstrated a moderate but promising ability to predict milk MIR spectra using a test-day mixed model. Current and future MIR traits prediction equations could be applied on the modeled spectra to predict all MIR traits in different situations instead of developing one test-day model separately for each trait. Modeling MIR spectra would benefit farmers for cow and herd management, for instance through prediction of future records or comparison between observed and expected wavenumbers or MIR traits for the detection of health and management problems. Potential resulting tools could be incorporated into milk recording systems.

摘要

利用测试日模型来模拟牛奶中红外(MIR)光谱以用于遗传目的的方法已经得到了探索,但是对于将其用于预测用于管理目的的牛奶 MIR 光谱方面的研究却很少。本文旨在研究利用测试日混合模型预测用于管理目的的牛奶 MIR 光谱的能力。该研究使用了来自首次泌乳的 53781 头荷斯坦奶牛的 467496 个测试日观测数据进行模型构建。在选定的 311 个 MIR 光谱波数上实施了主成分分析,以减少建模的特征数量;保留了 12 个主成分(PC),它们解释了大约 96%的总光谱变化。使用单个特征测试日混合模型对每个保留的 PC 进行建模。模型解决方案用于计算每个 PC 的预测得分,然后进行逆变换以获得 311 个预测的 MIR 光谱波数。使用 4 个新的数据集中的总共 122032 个记录,在 4 个不同的场景中测试了模型预测牛奶 MIR 光谱的能力,这些场景具有不同程度的奶牛信息。对于建模数据集,每个光谱波数的观测值和预测值之间的平均相关系数为 0.85,而对于各个场景,该值的范围为 0.36 至 0.62。从观测光谱和模型化光谱预测的牛奶脂肪、蛋白质和乳糖含量之间的相关性对于建模数据集为 0.83 至 0.89,对于各个场景为 0.32 至 0.73。研究结果表明,使用测试日混合模型预测牛奶 MIR 光谱具有中等但很有前途的能力。当前和未来的 MIR 特征预测方程可以应用于模型化光谱,以在不同情况下预测所有 MIR 特征,而不是为每个特征分别开发一个测试日模型。对 MIR 光谱进行建模将使农民受益于牛群和畜群管理,例如通过预测未来记录或比较观测值和预期波数或 MIR 特征,以检测健康和管理问题。潜在的结果工具可以被整合到牛奶记录系统中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验