Suppr超能文献

基于噬菌体的法医工具,用于可视化奶酪中的细菌污染物的空间分布。

Phage-based forensic tool for spatial visualization of bacterial contaminants in cheese.

机构信息

Department of Food Science, Cornell University, Ithaca, NY 14853.

Department of Food Science, Cornell University, Ithaca, NY 14853.

出版信息

J Dairy Sci. 2020 Jul;103(7):5964-5971. doi: 10.3168/jds.2019-17807. Epub 2020 May 14.

Abstract

Traditional procedures for microbial testing typically involve a homogenizing step. These methods give valuable information on the presence or enumeration of a bacterial contaminant, but not where the contaminant was in the original sample. Spatial information could be useful in troubleshooting sources of bacterial contamination in a processing plant. For example, if the contaminant was localized on the top of a food such as cheese, this might indicate dripping condensate along a specific processing line as its source. The objective of this proof-of-concept study was to evaluate the use of a genetically engineered phage to detect bacterial contaminants on cheese to be able to visualize the contaminants without the use of magnification. In this study, a T7 bacteriophage engineered to overexpress the luciferase NanoLuc (Promega, Madison, WI) was utilized to reveal the spatial location of Escherichia coli on lysogeny broth (LB) agar and queso fresco (QF). Four scenarios were tested to explore how phage may be applied, with a blue bioluminescent signal revealing the spatial location of contaminants: (1) phage applied topically via molten soft agar to E. coli-inoculated (a) LB agar or (b) QF; and (2) phage incorporated within (a) LB agar or (b) QF and then inoculated with E. coli. Each was tested in triplicate. Cultures of E. coli BL21 grown for 18 h were serially diluted in phosphate-buffered saline and inoculated onto 8 ± 0.5 g of LB agar or QF in 6-well plates. Plates were incubated at 37°C for 8 h for condition 1a, 24 h for 1b and 2b, and 22 h for 2a. For 1a and 1b, stock phage was added to molten soft agar, applied topically, and incubated for 2 additional hours to allow for E. coli infection. After incubation, the substrate NanoGlo (Promega) was added to cover the surface of the agar or cheese and imaged immediately in a dark box using a digital camera and long exposure to capture the bioluminescent signal. Photographs captured small blue spots where the incubated colony-forming units were located. The lowest inoculum level of E. coli detected for each scenario was 1.43 × 10 ± 9.94, 1.18 × 10 ± 7.07, 5.48 × 10 ± 1.19 × 10, and 2.37 × 10 ± 1.40 × 10 cfu/well, for 1a, 1b, 2a, and 2b, respectively. These data demonstrate that the reporter phage proof-of-concept could be used as a forensic tool to visualize the spatial location of bacteria in a cheese matrix. Future work will translate this concept to dairy-relevant phage-pathogen systems.

摘要

传统的微生物检测程序通常涉及均化步骤。这些方法提供了有关细菌污染物存在或计数的有价值信息,但不能提供污染物在原始样品中的位置信息。空间信息对于解决加工厂中细菌污染的来源可能很有用。例如,如果污染物位于奶酪等食物的顶部,这可能表明冷凝水滴沿着特定的加工线滴落,这是其来源。本概念验证研究的目的是评估使用基因工程噬菌体来检测奶酪上的细菌污染物,以便能够在不使用放大的情况下可视化污染物。在这项研究中,利用一种过表达荧光素酶 NanoLuc 的 T7 噬菌体(Promega,Madison,WI)来揭示大肠杆菌在溶菌肉汤(LB)琼脂和鲜奶酪(QF)上的空间位置。测试了四种情况来探索噬菌体如何应用,蓝色生物发光信号揭示了污染物的空间位置:(1)通过熔融软琼脂将噬菌体局部施用于接种有(a)LB 琼脂或(b)QF 的大肠杆菌;(2)将噬菌体掺入(a)LB 琼脂或(b)QF 中,然后接种大肠杆菌。每种情况均重复测试三次。在磷酸盐缓冲盐水(PBS)中连续稀释培养 18 小时的大肠杆菌 BL21 细胞,并在 6 孔板中的 8 ± 0.5 g LB 琼脂或 QF 中接种。平板在 37°C 下孵育 8 小时用于条件 1a,24 小时用于 1b 和 2b,22 小时用于 2a。对于 1a 和 1b,将储备噬菌体添加到熔融软琼脂中,局部施用,然后再孵育 2 小时,以允许大肠杆菌感染。孵育后,将 NanoGlo(Promega)底物添加到琼脂或奶酪表面,并立即在暗盒中使用数码相机和长曝光时间进行成像,以捕获生物发光信号。捕获的照片显示了孵育的菌落形成单位所在的小蓝点。对于每种情况,检测到的大肠杆菌的最低接种量分别为 1.43 × 10 ± 9.94、1.18 × 10 ± 7.07、5.48 × 10 ± 1.19 × 10 和 2.37 × 10 ± 1.40 × 10 cfu/孔对于 1a、1b、2a 和 2b。这些数据表明,报告噬菌体概念验证可以用作法医工具来可视化奶酪基质中细菌的空间位置。未来的工作将把这一概念转化为与乳制品相关的噬菌体-病原体系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验