Askeland Matthew, Clarke Bradley, Paz-Ferreiro Jorge
Department of Environmental Engineering, RMIT University, Melbourne, 3000, Australia.
School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
MethodsX. 2020 Apr 14;7:100886. doi: 10.1016/j.mex.2020.100886. eCollection 2020.
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous global environmental contaminants, environmentally persistent, mobile, can bioaccumulate and are toxic. Increasing emphasis is placed on the immobilisation and removal of PFAS from contaminated environmental matrices such as: potable water, surface water, groundwater, wastewater, sediments and soils (Dauchy et al., 2017; Cao et al., 2019; Hepburn et al., 2019). To achieve this, development of PFAS sorbents is increasingly undertaken (Du et al., 2014). Sorption studies are used to observe the interaction of sorbent and sorbate, but have two key limitations when undertaking sorption experiments for PFAS (1) the experimental protocol and (2) analytical techniques. The current batch sorption methods approached recommended by OECD Guideline 106 (OECD, 2000) are problematic, firstly, due to large sample numbers and PFAS specific laboratory difficulties, including near ubiquitous background PFAS contamination. Secondly, PFAS analytical techniques currently require solid-phase extraction (SPE) to be employed, which is slow and expensive, prior to instrumental analysis with liquid chromatography-mass spectrometry (LC-MS). A suitable alternative approach is needed to mitigate the drawbacks of current methodologies whilst catering for the high sample throughput required by benchtop trials characterising the sorption behaviour of PFAS - sorbent pairings.•A suitable method for PFAS measurement, overcoming shortcomings of current batch sorption methodologies is presented•The method can be applied to a wide range of sorbents and sorption environment conditions associated with PFAS immobilisation or removal in the environment•The presented method is novel through its high sample throughput, simple approach and minimisation of cross contamination sources.
全氟和多氟烷基物质(PFAS)是全球普遍存在的环境污染物,具有环境持久性、流动性,会生物累积且有毒。人们越来越重视从受污染的环境基质中固定和去除PFAS,这些基质包括:饮用水、地表水、地下水、废水、沉积物和土壤(Dauchy等人,2017年;Cao等人,2019年;Hepburn等人,2019年)。为实现这一目标,越来越多地开展了PFAS吸附剂的研发(Du等人,2014年)。吸附研究用于观察吸附剂与吸附质之间的相互作用,但在进行PFAS吸附实验时存在两个关键限制:(1)实验方案和(2)分析技术。经合组织指南106(经合组织,2000年)推荐的当前批量吸附方法存在问题,首先,由于样本数量众多以及PFAS特有的实验室困难,包括几乎无处不在的背景PFAS污染。其次,目前PFAS分析技术在采用液相色谱 - 质谱联用(LC - MS)进行仪器分析之前,需要使用固相萃取(SPE),这既缓慢又昂贵。需要一种合适的替代方法来减轻当前方法的缺点,同时满足台式试验表征PFAS - 吸附剂配对吸附行为所需的高样本通量。
• 提出了一种适用于PFAS测量的方法,克服了当前批量吸附方法的缺点
• 该方法可应用于与环境中PFAS固定或去除相关的多种吸附剂和吸附环境条件
• 所提出的方法具有新颖性,因其具有高样本通量、简单的方法以及最大限度减少交叉污染源。