Suppr超能文献

RNA 结合蛋白与晶状体生物学和白内障的转录后调控:调控控制细胞周期、转录、细胞骨架和透明度的关键因子的时空表达。

RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency.

机构信息

Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.

出版信息

Exp Eye Res. 2022 Jan;214:108889. doi: 10.1016/j.exer.2021.108889. Epub 2021 Dec 11.

Abstract

Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21), Cdkn1b (p27), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.

摘要

晶状体的发育 - 一种能够维持频繁形状变化以实现最佳聚焦力的透明组织 - 突破了细胞利用其基因组编码的分子工具包所能实现的极限。哺乳动物晶状体包含广泛的两种类型的细胞,前部单层的上皮细胞,在晶状体的赤道区域,开始分化为纤维细胞,为组织的大部分提供贡献。这个分化程序涉及到选择纤维细胞表达的 RNA 的大量上调,以及它们随后翻译成大量的蛋白质,如晶体蛋白。但有趣的是,纤维细胞在实现这一目标的同时,还经历了显著的形态变化,如伸长 - 涉及大约 1000 倍的长度增加 - 和迁移,这需要调节细胞骨架和细胞黏附因子。此外,这些分子和细胞事件必须协调一致,因为纤维细胞向失去细胞核和细胞器的方向发展,这不可逆转地损害了它们利用遗传硬连线信息的潜力。一个长期存在的问题是,信号转导和转录下游的过程,也可能参与反馈调节,如何有助于协调晶状体中的这些细胞分化事件。过去十年的研究结果表明,转录后基因表达调控机制对于控制细胞蛋白质组和协调晶状体发育和纤维细胞分化的关键过程至关重要。事实上,已经描述了 RNA 结合蛋白 (RBPs),如 Caprin2、Celf1、Rbm24 和 Tdrd7,它们在调节关键因子(如 Actn2、Cdkn1a (p21)、Cdkn1b (p27)、各种晶体蛋白、Dnase2b、Hspb1、Pax6、Prox1、Sox2)的转录后控制中发挥作用,这些因子在细胞周期、转录、细胞骨架维持和晶状体分化中都有不同程度的参与。此外,这些 RBPs 的缺陷已被证明导致各种眼部和晶状体缺陷和/或白内障。由于晶状体中的纤维细胞分化贯穿整个生命周期,因此预计在发育过程中起作用的基础调控机制也将被招募来维持老年晶状体的透明度。事实上,支持这一点的是,TDRD7 和 CAPRIN2 基因座已与人类的年龄相关性白内障有关。在这里,我将回顾关键 RBPs 在晶状体中的作用及其在理解晶状体缺陷病理中的重要性。我将讨论基于 RBP 的基因表达控制的进展,以及在晶状体中定义决定上皮细胞和纤维细胞蛋白质组的机制时需要解决的重要挑战。最后,我还将详细讨论几个关键的未来方向,包括应用生物信息学方法,如 iSyTE,研究衰老晶状体和年龄相关性白内障背景下基于 RBP 的转录后基因表达控制。

相似文献

9
Ectopic Pax6 expression disturbs lens fiber cell differentiation.异位Pax6表达扰乱晶状体纤维细胞分化。
Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3589-98. doi: 10.1167/iovs.04-0151.

引用本文的文献

5
Identification of spontaneous age-related cataract in .识别……中的自发性年龄相关性白内障
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Apr 28;49(4):553-561. doi: 10.11817/j.issn.1672-7347.2024.230534.

本文引用的文献

2
The effect of sex on the mouse lens transcriptome.性别对小鼠晶状体转录组的影响。
Exp Eye Res. 2021 Aug;209:108676. doi: 10.1016/j.exer.2021.108676. Epub 2021 Jun 17.
4
The aging mouse lens transcriptome.衰老老鼠晶状体转录组。
Exp Eye Res. 2021 Aug;209:108663. doi: 10.1016/j.exer.2021.108663. Epub 2021 Jun 11.
10
Organelle degradation in the lens by PLAAT phospholipases.溶酶体通过 PLAAT 磷脂酶降解晶状体。
Nature. 2021 Apr;592(7855):634-638. doi: 10.1038/s41586-021-03439-w. Epub 2021 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验