Anand Deepti, Al Saai Salma, Shrestha Sanjaya K, Barnum Carrie E, Chuma Shinichiro, Lachke Salil A
Department of Biological Sciences, University of Delaware, Newark, DE, United States.
Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, United States.
Front Cell Dev Biol. 2021 Feb 16;9:615761. doi: 10.3389/fcell.2021.615761. eCollection 2021.
Mutations/deficiency of , encoding a tudor domain protein involved in post-transcriptional gene expression control, causes early onset cataract in humans. While Tdrd7 is implicated in the control of key lens mRNAs, the impact of deficiency on microRNAs (miRNAs) and how this contributes to transcriptome misexpression and to cataracts, is undefined. We address this critical knowledge-gap by investigating -targeted knockout () mice that exhibit fully penetrant juvenile cataracts. We performed Affymetrix miRNA 3.0 microarray analysis on mouse lenses at postnatal day (P) 4, a stage preceding cataract formation. This analysis identifies 22 miRNAs [14 over-expressed (miR-15a, miR-19a, miR-138, miR-328, miR-339, miR-345, miR-378b, miR-384, miR-467a, miR-1224, miR-1935, miR-1946a, miR-3102, miR-3107), 8 reduced (let-7b, miR-34c, miR-298, miR-382, miR-409, miR-1198, miR-1947, miR-3092)] to be significantly misexpressed (fold-change ≥ ± 1.2, -value < 0.05) in lenses. To understand how these misexpressed miRNAs impact cataract, we predicted their mRNA targets and examined their misexpression upon -deficiency by performing comparative transcriptomics analysis on P4 and P30 lens. To prioritize these target mRNAs, we used various stringency filters (, fold-change in lens, iSyTE-based lens-enriched expression) and identified 98 reduced and 89 elevated mRNA targets for overexpressed and reduced miRNAs, respectively, which were classified as "top-priority" "high-priority," and "promising" candidates. For lens overexpressed miRNAs, this approach identified 18 top-priority reduced target mRNAs: , , , , , , , , , , , , , , , , and . Majority of these targets were also altered in other gene-specific perturbation mouse models (, , , , , /, ) of lens defects/cataract, suggesting their importance to lens biology. Gene ontology (GO) provided further insight into their relevance to lens pathology. For example, the -deficient lens capsule defect may be explained by reduced mRNA targets (, , , ) associated with "basement membrane". GO analysis also identified new genes (, ) recently linked to lens biology/pathology. Together, these analyses define a new Tdrd7-downstream miRNA-mRNA network, in turn, uncovering several new mRNA targets and their associated pathways relevant to lens biology and offering molecular insights into the pathology of congenital cataract.
编码一种参与转录后基因表达调控的tudor结构域蛋白的基因突变/缺陷会导致人类早发性白内障。虽然Tdrd7与晶状体关键mRNA的调控有关,但该基因缺陷对微小RNA(miRNA)的影响以及这如何导致转录组错误表达和白内障尚不清楚。我们通过研究表现出完全显性的幼年白内障的靶向敲除(Tdrd7-/-)小鼠来填补这一关键的知识空白。我们在出生后第4天(P4)对Tdrd7-/-小鼠晶状体进行了Affymetrix miRNA 3.0微阵列分析,这是白内障形成前的一个阶段。该分析确定了22种miRNA[14种过表达(miR-15a、miR-19a、miR-138、miR-328、miR-339、miR-345、miR-378b、miR-384、miR-467a、miR-1224、miR-1935、miR-1946a、miR-3102、miR-3107),8种减少(let-7b、miR-34c、miR-298、miR-382、miR-409、miR-1198、miR-1947、miR-3092)]在Tdrd7-/-晶状体中显著错误表达(倍数变化≥±1.2,P值<0.05)。为了了解这些错误表达的miRNA如何影响Tdrd7-/-白内障,我们预测了它们的mRNA靶标,并通过对P4和P30的Tdrd7-/-晶状体进行比较转录组学分析,研究了Tdrd7缺陷时它们的错误表达情况。为了对这些靶标mRNA进行优先级排序,我们使用了各种严格度筛选标准(P值、Tdrd7-/-晶状体中的倍数变化、基于iSyTE的晶状体富集表达),分别确定了过表达和减少的miRNA的98个减少和89个增加的mRNA靶标,这些靶标被分类为“最高优先级”“高优先级”和“有前景”的候选者。对于Tdrd7-/-晶状体过表达的miRNA,这种方法确定了18个最高优先级的减少靶标mRNA:[具体基因名称未给出]。这些靶标中的大多数在其他晶状体缺陷/白内障的基因特异性扰动小鼠模型([具体模型名称未给出])中也发生了改变,表明它们对晶状体生物学的重要性。基因本体论(GO)进一步深入了解了它们与晶状体病理学的相关性。例如,Tdrd7缺陷的晶状体囊膜缺陷可能由与“基底膜”相关的减少的mRNA靶标([具体基因名称未给出])来解释。GO分析还确定了最近与晶状体生物学/病理学相关的新基因([具体基因名称未给出])。总之,这些分析定义了一个新的Tdrd7下游miRNA-mRNA网络,进而揭示了几个与晶状体生物学相关的新mRNA靶标及其相关途径,并为先天性白内障的病理学提供了分子见解。