Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
Phys Chem Chem Phys. 2020 Jun 4;22(21):12028-12038. doi: 10.1039/d0cp00272k.
Reaction mechanisms of organic molecules in a salt environment are of fundamental interest and are potentially relevant for atmospheric chemistry, in particular sea-salt aerosols. Here, we found evidence for lactone formation upon infrared multiple photon dissociation (IRMPD) of non-covalent bromoalkanoate complexes as well as bromoalkanoate embedded in sodium iodide clusters. The mechanism of lactone formation from bromoalkanoates of different chain lengths is studied in the gas phase with and without salt environment by a combination of IRMPD and quantum chemical calculations. IRMPD spectra are recorded in the 833-3846 cm-1 range by irradiating the clusters with tunable laser systems while they are stored in the cell of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The measurements of the binary complex Br(CH2)mCOOH·Br(CH2)mCOO- for m = 4 indicate valerolactone formation without salt environment while lactone formation is hindered for longer chain lengths. When embedded in sodium iodide clusters, butyrolactone formation from 4-bromobutyrate seems to take place already during formation of the doped clusters in the electrospray process, evidenced by the infrared (IR) signature of the lactone. In contrast, IRMPD spectra of sodium iodide clusters containing 5-bromovalerate contain signatures for both valerate as well as valerolactone. In both cases, however, a neutral fragment corresponding to the mass of valerolactone is eliminated, indicating that ring formation can be activated by IR light in the salt cluster. Quantum chemical calculations show that already complexation with one sodium ion significantly increases the barrier for lactone formation for all chain lengths. IRMPD of sodium iodide clusters doped with neutral bromoalkanoic acid molecules proceeds by elimination of HI or desorption of the intact acid molecule from the cluster.
在盐环境中有机分子的反应机制具有重要的基础意义,并且可能与大气化学有关,特别是与海盐气溶胶有关。在这里,我们在非共价溴代烷酸酯配合物以及溴代烷酸酯嵌入碘化钠团簇的红外多光子解离(IRMPD)后发现了内酯形成的证据。通过 IRMPD 和量子化学计算的结合,在有和没有盐环境的情况下,研究了不同链长的溴代烷酸酯形成内酯的机制。通过用可调谐激光系统辐照团簇,在 833-3846 cm-1 范围内记录 IRMPD 光谱,同时将它们储存在傅里叶变换离子回旋共振(FT-ICR)质谱仪的腔室中。二元配合物 Br(CH2)mCOOH·Br(CH2)mCOO-(m = 4)的测量表明,在没有盐环境的情况下形成戊内酯,而对于较长链长的内酯形成则受到阻碍。当嵌入碘化钠团簇中时,4-溴丁酸似乎已经在电喷雾过程中形成掺杂团簇时形成丁内酯,这可以通过内酯的红外(IR)特征来证明。相比之下,含有 5-溴戊酸的碘化钠团簇的 IRMPD 光谱包含戊酸盐和戊内酯的特征。然而,在这两种情况下,都消除了与戊内酯质量相对应的中性碎片,这表明盐团簇中的 IR 光可以激活环形成。量子化学计算表明,与一个钠离子的络合已经显著增加了所有链长内酯形成的势垒。中性溴代烷酸分子掺杂的碘化钠团簇的 IRMPD 通过 HI 的消除或完整酸分子从团簇的解吸来进行。