Liu Mingjie, Hybertsen Mark S, Wu Qin
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Angew Chem Int Ed Engl. 2020 Aug 24;59(35):14835-14841. doi: 10.1002/anie.202003091. Epub 2020 Jun 15.
Weak binding of hydrogen atoms to the 2H-MoS basal plane renders MoS inert as an electrocatalyst for the hydrogen evolution reaction. Transition-metal doping can activate neighboring sulfur atoms in the MoS basal plane to bind hydrogen more strongly. Our theoretical studies show strong variation in the degree of activation by dopants across the 3d transition-metal series. To understand the trends in activation, we propose a model based on the electronic promotion energy required to partially open the full valence shell of a local S atom and therefore enable it to bond with a H atom. In general, the promotion is achieved through an electron transfer from the S to neighboring metal-atom sites. Furthermore, we demonstrate a specific, electronic-structure-based descriptor for the hydrogen-binding strength: Δ , the local interband energy separation between the lowest empty d-states on the dopant metal atoms and occupied p-states on S. This model can be used to provide guidelines for chalcogen activation in future catalyst design based on doped transition-metal dichalcogenides.
氢原子与二硫化钼(2H-MoS)基面的弱结合使得MoS作为析氢反应的电催化剂呈惰性。过渡金属掺杂可激活MoS基面中相邻的硫原子,使其与氢的结合更强。我们的理论研究表明,3d过渡金属系列中掺杂剂的活化程度存在很大差异。为了解活化趋势,我们提出了一个基于部分打开局部S原子的满价壳层所需的电子激发能的模型,从而使其能够与H原子键合。一般来说,这种激发是通过电子从S转移到相邻的金属原子位点来实现的。此外,我们展示了一种基于电子结构的氢结合强度的特定描述符:Δ,即掺杂金属原子上最低空d态与S上占据的p态之间的局部带间能量分离。该模型可用于为未来基于掺杂过渡金属二硫属化物的催化剂设计中的硫族元素活化提供指导。