Suppr超能文献

通过可通信性序列熵和相关的 Jensen-Shannon 散度对网络复杂性进行表征。

Characterization of network complexity by communicability sequence entropy and associated Jensen-Shannon divergence.

作者信息

Shi Dan-Dan, Chen Dan, Pan Gui-Jun

机构信息

Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China.

出版信息

Phys Rev E. 2020 Apr;101(4-1):042305. doi: 10.1103/PhysRevE.101.042305.

Abstract

Characterizing the structural complexity of networks is a major challenging work in network science. However, a valid measure to quantify network complexity remains unexplored. Although the entropy of various network descriptors and algorithmic complexity have been selected in the previous studies to do it, most of these methods only contain local information of the network, so they cannot accurately reflect the global structural complexity of the network. In this paper, we propose a statistical measure to characterize network complexity from a global perspective, which is composed of the communicability sequence entropy of the network and the associated Jensen-Shannon divergence. We study the influences of the topology of the synthetic networks on the complexity measure. The results show that networks with strong heterogeneity, strong degree-degree correlation, and a certain number of communities have a relatively large complexity. Moreover, by studying some real networks and their corresponding randomized network models, we find that the complexity measure is a monotone increasing function of the order of the randomized network, and the ones of real networks are larger complexity-values compared to all corresponding randomized networks. These results indicate that the complexity measure is sensitive to the changes of the basic topology of the network and increases with the increase of the external constraints of the network, which further proves that the complexity measure presented in this paper can effectively represent the topological complexity of the network.

摘要

刻画网络的结构复杂性是网络科学中一项极具挑战性的工作。然而,一种用于量化网络复杂性的有效度量方法仍未被探索。尽管在先前的研究中已经选择了各种网络描述符的熵和算法复杂性来进行这项工作,但这些方法大多只包含网络的局部信息,因此无法准确反映网络的全局结构复杂性。在本文中,我们提出了一种从全局角度刻画网络复杂性的统计度量方法,它由网络的通信性序列熵和相关的 Jensen-Shannon 散度组成。我们研究了合成网络的拓扑结构对复杂性度量的影响。结果表明,具有强异质性、强度-度相关性以及一定数量社区的网络具有相对较大的复杂性。此外,通过研究一些真实网络及其相应的随机网络模型,我们发现复杂性度量是随机网络阶数的单调递增函数,并且真实网络的复杂性值比所有相应的随机网络都要大。这些结果表明,复杂性度量对网络基本拓扑结构的变化敏感,并且随着网络外部约束的增加而增加,这进一步证明了本文提出的复杂性度量能够有效地表示网络的拓扑复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验