Banerji Christopher R S, Severini Simone, Teschendorff Andrew E
Department of Computer Science, University College London, London WC1E 6BT, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052814. doi: 10.1103/PhysRevE.87.052814. Epub 2013 May 31.
A measure is derived to quantify directed information transfer between pairs of vertices in a weighted network, over paths of a specified maximal length. Our approach employs a general, probabilistic model of network traffic, from which the informational distance between dynamics on two weighted networks can be naturally expressed as a Jensen Shannon divergence. Our network transfer entropy measure is shown to be able to distinguish and quantify causal relationships between network elements, in applications to simple synthetic networks and a biological signaling network. We conclude with a theoretical extension of our framework, in which the square root of the Jensen Shannon Divergence induces a metric on the space of dynamics on weighted networks. We prove a convergence criterion, demonstrating that a form of convergence in the structure of weighted networks in a family of matrix metric spaces implies convergence of their dynamics with respect to the square root Jensen Shannon divergence metric.
我们推导了一种度量方法,用于量化加权网络中顶点对之间在指定最大长度路径上的定向信息传递。我们的方法采用了一种通用的网络流量概率模型,基于该模型,两个加权网络上动态过程之间的信息距离可以自然地表示为詹森-香农散度。在应用于简单的合成网络和生物信号网络时,我们的网络转移熵度量方法能够区分并量化网络元素之间的因果关系。我们以框架的理论扩展作为结尾,其中詹森-香农散度的平方根在加权网络动态过程空间上诱导出一种度量。我们证明了一个收敛准则,表明在一族矩阵度量空间中加权网络结构的某种收敛形式意味着它们的动态过程相对于平方根詹森-香农散度度量收敛。