Suppr超能文献

. 对银离子的耐受性和真菌修复作用

Tolerance and mycoremediation of silver ions by .

作者信息

El Sayed Manal T, El-Sayed Ashraf S A

机构信息

Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.

出版信息

Heliyon. 2020 May 12;6(5):e03866. doi: 10.1016/j.heliyon.2020.e03866. eCollection 2020 May.

Abstract

Silver ions discharged from various industries, are potentially toxic to living organisms at low concentrations, thus, there is an increasing need for development of an eco-friendly and cost-effective approach for its bioremediation. Filamentous fungi especially, displayed a strong resistance to copper and cadmium ions as revealed from our previous study (El-Sayed 2014), however, the mechanisms of silver resistance by this fungus has not been resolved yet. Thus, this study was an extension to our previous work, to elucidate the mechanism of silver ions resistance and biotransformation by . The growth, bioaccumulation, thiol, total antioxidant, malondialdehyde (MDA), hydrogen peroxide (HO) contents and polyphenol oxidase (PPO) and catalase (CAT) activities of in response to silver ions were determined. Production and bioaccumulation of silver nanoparticles was characterized by UV-visible spectroscopy, TEM, and X-ray powder diffraction (XRD). The ultrastructural changes of induced by Ag(I) was examined by TEM and SEM. Production of oxalic acid by was increased by about 343.8% in response to 400 mg/l Ag(I), compared to control cultures (without silver ions) as revealed from HPLC analysis. The maximum biosorption levels by the native and alkali-treated biomass were carried out at pH 5.0, initial metal concentration 200 mg/l, biomass 0.5 g/l, temperature 35 °C, and contact time 1 h (native biomass) and 3 h (alkali-treated biomass). Fourier transform infrared spectroscopy (FTIR) results revealed that the main functional groups involved on this mycoremediation were C-S stretching, C=O C=N, C - H bending, C-N stretching and N-H bending. EDX spectra indicated the involvement of fungal cellular sulfur and phosphorus compounds in Ag(I) binding.

摘要

各行业排放的银离子在低浓度时对生物体具有潜在毒性,因此,越来越需要开发一种生态友好且经济高效的生物修复方法。特别是丝状真菌,如我们先前的研究(El-Sayed,2014年)所示,对铜离子和镉离子表现出很强的抗性,然而,这种真菌对银的抗性机制尚未得到解决。因此,本研究是我们先前工作的延伸,旨在阐明 对银离子的抗性和生物转化机制。测定了 对银离子的生长、生物积累、硫醇、总抗氧化剂、丙二醛(MDA)、过氧化氢(HO)含量以及多酚氧化酶(PPO)和过氧化氢酶(CAT)活性。通过紫外可见光谱、透射电子显微镜(TEM)和X射线粉末衍射(XRD)对银纳米颗粒的产生和生物积累进行了表征。通过TEM和扫描电子显微镜(SEM)检查了Ag(I)诱导的 的超微结构变化。HPLC分析显示,与对照培养物(无银离子)相比,在400 mg/l Ag(I)作用下, 的草酸产量增加了约343.8%。天然和碱处理生物质的最大生物吸附水平在pH 为5.0、初始金属浓度200 mg/l、生物质0.5 g/l、温度35 °C以及接触时间1 h(天然生物质)和3 h(碱处理生物质)的条件下进行。傅里叶变换红外光谱(FTIR)结果表明,这种真菌修复作用涉及的主要官能团为C-S伸缩、C=O、C=N、C-H弯曲、C-N伸缩和N-H弯曲。能谱分析表明真菌细胞中的硫和磷化合物参与了Ag(I)的结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c17e/7225397/15305e9fdb38/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验