Suppr超能文献

基于图像的经济型热带木材评估的无参考质量评估。

No-reference quality assessment for image-based assessment of economically important tropical woods.

机构信息

Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Malaysia.

出版信息

PLoS One. 2020 May 19;15(5):e0233320. doi: 10.1371/journal.pone.0233320. eCollection 2020.

Abstract

Image Quality Assessment (IQA) is essential for the accuracy of systems for automatic recognition of tree species for wood samples. In this study, a No-Reference IQA (NR-IQA), wood NR-IQA (WNR-IQA) metric was proposed to assess the quality of wood images. Support Vector Regression (SVR) was trained using Generalized Gaussian Distribution (GGD) and Asymmetric Generalized Gaussian Distribution (AGGD) features, which were measured for wood images. Meanwhile, the Mean Opinion Score (MOS) was obtained from the subjective evaluation. This was followed by a comparison between the proposed IQA metric, WNR-IQA, and three established NR-IQA metrics, namely Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), deepIQA, Deep Bilinear Convolutional Neural Networks (DB-CNN), and five Full Reference-IQA (FR-IQA) metrics known as MSSIM, SSIM, FSIM, IWSSIM, and GMSD. The proposed WNR-IQA metric, BRISQUE, deepIQA, DB-CNN, and FR-IQAs were then compared with MOS values to evaluate the performance of the automatic IQA metrics. As a result, the WNR-IQA metric exhibited a higher performance compared to BRISQUE, deepIQA, DB-CNN, and FR-IQA metrics. Highest quality images may not be routinely available due to logistic factors, such as dust, poor illumination, and hot environment present in the timber industry. Moreover, motion blur could occur due to the relative motion between the camera and the wood slice. Therefore, the advantage of WNR-IQA could be seen from its independency from a "perfect" reference image for the image quality evaluation.

摘要

图像质量评估(IQA)对于树木品种自动识别系统的准确性至关重要。在这项研究中,提出了一种无参考图像质量评估(NR-IQA),即木材无参考图像质量评估(WNR-IQA)指标,用于评估木材图像的质量。使用广义高斯分布(GGD)和非对称广义高斯分布(AGGD)特征训练支持向量回归(SVR),这些特征是针对木材图像测量的。同时,从主观评估中获得平均意见得分(MOS)。然后,将提出的 IQA 指标、WNR-IQA 与三种已建立的 NR-IQA 指标,即盲/无参考图像空间质量评估器(BRISQUE)、深度 IQA、深度双线性卷积神经网络(DB-CNN),以及五种全参考-IQA(FR-IQA)指标,即 MSSIM、SSIM、FSIM、IWSSIM 和 GMSD 进行比较。然后,将提出的 WNR-IQA 指标、BRISQUE、深度 IQA、DB-CNN 和 FR-IQA 与 MOS 值进行比较,以评估自动 IQA 指标的性能。结果表明,WNR-IQA 指标的性能优于 BRISQUE、深度 IQA、DB-CNN 和 FR-IQA 指标。由于物流因素,例如木材工业中存在的灰尘、照明不佳和高温环境,可能无法常规获得高质量的图像。此外,由于相机和木材切片之间的相对运动,可能会出现运动模糊。因此,WNR-IQA 的优势在于其在图像质量评估中独立于“完美”参考图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aec/7236984/be052242daad/pone.0233320.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验