Suppr超能文献

在单表型数据中识别群体水平差异表达基因。

Identification of population-level differentially expressed genes in one-phenotype data.

机构信息

Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.

Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China.

出版信息

Bioinformatics. 2020 Aug 1;36(15):4283-4290. doi: 10.1093/bioinformatics/btaa523.

Abstract

MOTIVATION

For some specific tissues, such as the heart and brain, normal controls are difficult to obtain. Thus, studies with only a particular type of disease samples (one phenotype) cannot be analyzed using common methods, such as significance analysis of microarrays, edgeR and limma. The RankComp algorithm, which was mainly developed to identify individual-level differentially expressed genes (DEGs), can be applied to identify population-level DEGs for the one-phenotype data but cannot identify the dysregulation directions of DEGs.

RESULTS

Here, we optimized the RankComp algorithm, termed PhenoComp. Compared with RankComp, PhenoComp provided the dysregulation directions of DEGs and had more robust detection power in both simulated and real one-phenotype data. Moreover, using the DEGs detected by common methods as the 'gold standard', the results showed that the DEGs detected by PhenoComp using only one-phenotype data were comparable to those identified by common methods using case-control samples, independent of the measurement platform. PhenoComp also exhibited good performance for weakly differential expression signal data.

AVAILABILITY AND IMPLEMENTATION

The PhenoComp algorithm is available on the web at https://github.com/XJJ-student/PhenoComp.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

对于某些特定组织,如心脏和大脑,很难获得正常对照。因此,仅使用特定类型疾病样本(一种表型)的研究不能使用常见方法(如微阵列显著性分析、edgeR 和 limma)进行分析。RankComp 算法主要用于识别个体水平差异表达基因(DEG),可应用于识别单表型数据的群体水平 DEG,但不能识别 DEG 的调控方向。

结果

在这里,我们优化了 RankComp 算法,称为 PhenoComp。与 RankComp 相比,PhenoComp 提供了 DEG 的调控方向,在模拟和真实单表型数据中具有更强的检测能力。此外,使用常见方法检测到的 DEGs 作为“金标准”,结果表明,仅使用单表型数据检测到的 PhenoComp 的 DEGs 与使用病例对照样本的常见方法鉴定的 DEGs 相当,与测量平台无关。PhenoComp 对弱差异表达信号数据也表现出良好的性能。

可用性和实现

PhenoComp 算法可在 https://github.com/XJJ-student/PhenoComp 上在线获取。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d8e/7520039/651c51079d1a/btaa523f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验