Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
NPJ Syst Biol Appl. 2024 Feb 15;10(1):18. doi: 10.1038/s41540-024-00340-w.
A major challenge in precision oncology is to detect targetable cancer vulnerabilities in individual patients. Modeling high-throughput omics data in biological networks allows identifying key molecules and processes of tumorigenesis. Traditionally, network inference methods rely on many samples to contain sufficient information for learning, resulting in aggregate networks. However, to implement patient-tailored approaches in precision oncology, we need to interpret omics data at the level of individual patients. Several single-sample network inference methods have been developed that infer biological networks for an individual sample from bulk RNA-seq data. However, only a limited comparison of these methods has been made and many methods rely on 'normal tissue' samples as reference, which are not always available. Here, we conducted an evaluation of the single-sample network inference methods SSN, LIONESS, SWEET, iENA, CSN and SSPGI using transcriptomic profiles of lung and brain cancer cell lines from the CCLE database. The methods constructed functional gene networks with distinct network characteristics. Hub gene analyses revealed different degrees of subtype-specificity across methods. Single-sample networks were able to distinguish between tumor subtypes, as exemplified by node strength clustering, enrichment of known subtype-specific driver genes among hubs and differential node strength. We also showed that single-sample networks correlated better to other omics data from the same cell line as compared to aggregate networks. We conclude that single-sample network inference methods can reflect sample-specific biology when 'normal tissue' samples are absent and we point out peculiarities of each method.
精准肿瘤学的一个主要挑战是在个体患者中检测可靶向的癌症弱点。在生物网络中对高通量组学数据进行建模可以识别肿瘤发生的关键分子和过程。传统上,网络推断方法依赖于许多样本来包含足够的学习信息,从而产生聚合网络。然而,为了在精准肿瘤学中实施针对患者的方法,我们需要在个体患者的层面上解释组学数据。已经开发了几种单样本网络推断方法,可从批量 RNA-seq 数据推断个体样本的生物网络。然而,这些方法之间的比较非常有限,并且许多方法依赖于“正常组织”样本作为参考,而这些样本并不总是可用的。在这里,我们使用 CCLE 数据库中的肺癌和脑癌细胞系的转录组谱评估了单样本网络推断方法 SSN、LIONESS、SWEET、iENA、CSN 和 SSPGI。这些方法构建了具有不同网络特征的功能基因网络。枢纽基因分析揭示了方法之间不同程度的亚型特异性。单样本网络能够区分肿瘤亚型,例如节点强度聚类、枢纽基因中已知的亚型特异性驱动基因的富集以及节点强度的差异。我们还表明,与聚合网络相比,来自同一细胞系的其他组学数据与单样本网络的相关性更好。我们得出结论,当“正常组织”样本不存在时,单样本网络推断方法可以反映样本特异性生物学,并且我们指出了每种方法的特点。