CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for, Nanoscience and Technology, Beijing, 100190, P. R. China.
Chemistry. 2020 Nov 2;26(61):13748-13753. doi: 10.1002/chem.202001929. Epub 2020 Sep 17.
Solar energy can be harvested by biological systems to regulate the directional transport of protons and ions across cells and organelles. Structural and functional bio-mimic photo-active ion nanofluidic conductors, usually in the forms of ion channels and ion pumps, have been increasingly applied to realize active ion transport. However, progress in attaining effective light-driven active transport of ions (protons) has been constrained by the inherent limitations of membrane materials and their chemical and topological structures. Recent advances in the construction of photo-responsive physical ion pump in all-solid-state membranes could potentially lead to new classes of membrane-based materials for active ion transport. In this concept, the development of the state-of-the-art technologies for manufacturing artificial light-driven active ion transport systems are presented and discussed, which mainly involves the utilization of solar energy to realize two types of active ion transport, chemically and physically active ion transport. Afterward, we summarize the key factors towards culminating highly effective and selective membranes for active ion transport. To conclude, we highlight the promising application perspectives of this light-driven active ion transport technique in the field of energy conversion, bio-interfaces and water treatment.
太阳能可以被生物系统收集,以调节质子和离子在细胞和细胞器中的定向传输。结构和功能仿生光活性离子纳米流体导体,通常以离子通道和离子泵的形式,已越来越多地应用于实现主动离子传输。然而,实现有效的光驱动离子(质子)主动运输的进展受到膜材料及其化学和拓扑结构的固有限制。全固态膜中光响应物理离子泵的构建方面的最新进展,可能会为主动离子传输带来新的一类基于膜的材料。在这一概念中,介绍和讨论了制造人工光驱动主动离子传输系统的最先进技术的发展,主要涉及利用太阳能来实现两种类型的主动离子传输,即化学主动离子传输和物理主动离子传输。之后,我们总结了实现高效和选择性主动离子传输膜的关键因素。最后,我们强调了这种光驱动主动离子传输技术在能量转换、生物界面和水处理领域的有前景的应用前景。