Nie Xiaoyan, Li Li, Sun Mingyan, Xiao Tianliang, Hu Ziying, Liu Zhaoyue
School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-Biotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China.
Small. 2024 Jul;20(29):e2311531. doi: 10.1002/smll.202311531. Epub 2024 Feb 7.
The selective uphill and downhill movement of protons in and out of photosynthetic membrane enabled by ion pumps and ion channels is key to photosynthesis. Reproducing the functions of photosynthetic membranes in artificial systems has been a persistent goal. Here, a visible-light-harvesting nanofluidic channels is reported which experimentally demonstrates the ion translocation functions of photosynthetic membranes. A molecular junction consisting of photosensitive ruthenium complexes linked to TiO electron acceptors forms the reaction centers in the nanofluidic channels. The visible-light-triggered vectorial electron injection into TiO establishes a difference in transmembrane potential across the channels, which enables uphill transport of ions against a 5-fold concentration gradient. In addition, the asymmetric charge distribution across the channels enables the unidirectional downhill movement of ions, demonstrating an ion rectification effect with a ratio of 18:1. This work, for the first time, mimics both the uphill and downhill ion translocation functions of photosynthetic membranes, which lays a foundation for nanofluidic energy conversion.
由离子泵和离子通道实现的质子在光合膜内外的选择性上坡和下坡移动是光合作用的关键。在人工系统中重现光合膜的功能一直是一个长期目标。在此,报道了一种可见光捕获纳米流体通道,它通过实验证明了光合膜的离子转运功能。由与TiO电子受体相连的光敏钌配合物组成的分子结在纳米流体通道中形成反应中心。可见光触发的向TiO的矢量电子注入在通道两端建立了跨膜电位差,这使得离子能够逆着5倍浓度梯度进行上坡运输。此外,通道两侧不对称的电荷分布使得离子能够单向下坡移动,展示出18:1的离子整流效应。这项工作首次模拟了光合膜的上坡和下坡离子转运功能,为纳米流体能量转换奠定了基础。