Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
Eur J Med Chem. 2020 Aug 1;199:112421. doi: 10.1016/j.ejmech.2020.112421. Epub 2020 May 8.
It has been realized that FDA approved drugs may have more molecular targets than is commonly thought. Thus, to find the exact drug-target interactions (DTIs) is of great significance for exploring the new molecular mechanism of drugs. Here, we developed a multi-scale system pharmacology (MSSP) method for the large-scale prediction of DTIs. We used MSSP to integrate drug-related and target-related data from multiple levels, the network structural data formed by known drug-target relationships for predicting likely unknown DTIs. Prediction results revealed that Ixabepilone, an epothilone B analog for treating breast cancer patients, may target Bcl-2, an oncogene that contributes to tumor progression and therapy resistance by inhibiting apoptosis. Furthermore, we demonstrated that Ixabepilone could bind with Bcl-2 and decrease its protein expression in breast cancer cells. The down-regulation of Bcl-2 by Ixabepilone is resulted from promoting its degradation by affecting p-Bcl-2. We further found that Ixabepilone could induce autophagy by releasing Beclin1 from Beclin1/Bcl-2 complex. Inhibition of autophagy by knockdown of Beclin1 or pharmacological inhibitor augmented apoptosis, thus enhancing the antitumor efficacy of Ixabepilone against breast cancer cells in vitro and in vivo. In addition, Ixabepilone also decreases Bcl-2 protein expression and induces cytoprotective autophagy in human hepatic carcinoma and glioma cells. In conclusion, this study not only provides a feasible and alternative way exploring new molecular mechanisms of drugs by combing computation DTI prediction, but also reveals an effective strategy to reinforce the antitumor efficacy of Ixabepilone.
已经意识到,FDA 批准的药物可能具有比人们通常认为的更多的分子靶标。因此,找到确切的药物-靶标相互作用(DTIs)对于探索药物的新分子机制具有重要意义。在这里,我们开发了一种多尺度系统药理学(MSSP)方法来大规模预测 DTIs。我们使用 MSSP 整合来自多个层次的药物相关和靶标相关数据,以及由已知药物-靶标关系形成的网络结构数据,用于预测可能未知的 DTIs。预测结果表明,伊沙匹隆是一种用于治疗乳腺癌患者的埃坡霉素 B 类似物,可能靶向 Bcl-2,Bcl-2 是一种癌基因,通过抑制细胞凋亡促进肿瘤进展和治疗耐药性。此外,我们证明伊沙匹隆可以与 Bcl-2 结合,并降低乳腺癌细胞中的 Bcl-2 蛋白表达。伊沙匹隆通过影响 p-Bcl-2 来促进 Bcl-2 的降解,从而下调 Bcl-2。我们进一步发现,伊沙匹隆可以通过从 Beclin1/Bcl-2 复合物中释放 Beclin1 来诱导自噬。通过敲低 Beclin1 或使用药理学抑制剂抑制自噬,增强了凋亡,从而增强了伊沙匹隆在体外和体内对乳腺癌细胞的抗肿瘤疗效。此外,伊沙匹隆还可以降低 Bcl-2 蛋白表达并诱导人肝癌和神经胶质瘤细胞的细胞保护自噬。总之,这项研究不仅为通过结合计算 DTIs 预测探索药物新的分子机制提供了一种可行的替代方法,而且还揭示了一种增强伊沙匹隆抗肿瘤疗效的有效策略。