Wei Xiao, Zhu Tingfei, Yip Hiu Fung, Fu Xiangzheng, Jiang Dejun, Deng Youchao, Lu Aiping, Cao Dongsheng
Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410003 China
School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China.
Chem Sci. 2024 Aug 19;15(35):14471-84. doi: 10.1039/d4sc03580a.
The identification of targets for candidate molecules is a pivotal stride in the drug development journey, encompassing lead discovery, drug repurposing, and the scrutiny of potential off-target or side effects. Consequently, enhancing the precision of target prediction has significant implications. Moreover, current target prediction methods primarily rely on the principle of ligand-based chemical similarity, lacking the capture of novel compound-target relationships based on ligand high-level characterization similarity. Therefore, in this context, we introduce a pioneering algorithm known as the Fused Multiple Biological Signatures (FMBS) strategy. This approach leverages a Bayesian framework to amalgamate 25 predictable biological space characterizations of molecules to predict novel targets through scaffold hopping, thereby improving target prediction accuracy and providing a versatile tool for a wide range of small-molecule target prediction. When juxtaposed with alternative target prediction methods, FMBS showcases notable efficacy, outperforming traditional descriptors. Through an analysis of scaffold hopping cases, we elucidate how FMBS attains heightened accuracy by assimilating comprehensive and complementary high-dimensional signatures, thereby underscoring its potential in unearthing novel compound-target relationships. The findings underscore that our approach adeptly pinpoints promising candidate targets, thereby expediting drug mechanism exploration through the integration of multiple high-level characterizations.
确定候选分子的靶点是药物研发过程中的关键一步,涵盖先导化合物发现、药物再利用以及对潜在脱靶或副作用的审查。因此,提高靶点预测的准确性具有重要意义。此外,当前的靶点预测方法主要依赖基于配体的化学相似性原则,缺乏基于配体高级特征相似性来捕捉新型化合物 - 靶点关系的能力。因此,在此背景下,我们引入了一种开创性的算法,即融合多重生物学特征(FMBS)策略。该方法利用贝叶斯框架合并分子的25种可预测生物学空间特征,通过骨架跃迁预测新靶点,从而提高靶点预测准确性,并为广泛的小分子靶点预测提供了一种通用工具。与其他靶点预测方法相比,FMBS显示出显著的效果,优于传统描述符。通过对骨架跃迁案例的分析,我们阐明了FMBS如何通过整合全面且互补的高维特征来实现更高的准确性,从而突出其在挖掘新型化合物 - 靶点关系方面的潜力。研究结果强调,我们的方法能够巧妙地确定有前景的候选靶点,从而通过整合多种高级特征加速药物作用机制的探索。