Suppr超能文献

最优地质统计学方法在电离层插值中的应用:以 2015 年圣帕特里克节风暴为例。

Optimal Geostatistical Methods for Interpolation of the Ionosphere: A Case Study on the St Patrick's Day Storm of 2015.

机构信息

Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.

出版信息

Sensors (Basel). 2020 May 16;20(10):2840. doi: 10.3390/s20102840.

Abstract

Geostatistical Analyst is a set of advanced tools for analysing spatial data and generating surface models using statistical and deterministic methods available in ESRI ArcMap software. It enables interpolation models to be created on the basis of data measured at chosen points. The software also provides tools that enable analyses of the data variability, setting data limits and checking global trends, as well as creating forecast maps, estimating standard error and probability, making various surface visualisations, and analysing spatial autocorrelation and correlation between multiple data sets. The data can be interpolated using deterministic methods providing surface continuity, and also by stochastic techniques like kriging, based on a statistical model considering data autocorrelation and providing expected interpolation errors. These properties of Geostatistical Analyst make it a valuable tool for modelling and analysing the Earth's ionosphere. Our research aims to test its applicability for studying the ionosphere, and ionospheric disturbances in particular. As raw source data, we use Global Navigation Satellite Systems (GNSS)-derived ionospheric total electron content. This paper compares ionosphere models (maps) developed using various interpolation methods available in Geostatistical Analyst. The comparison is based on several indicators that can provide the statistical characteristics of an interpolation error. In this contribution, we use our own method, the parametric assessment of the quality of estimation (MPQE). Here, we present analyses and a discussion of the modelling results for various states of the ionosphere: On the disturbed day of the St Patrick's Day geomagnetic storm of 2015, one quiet day before the storm and one day after its occurrence, reflecting the ionosphere recovery phase. Finally, the optimal interpolation method is selected and presented.

摘要

地质统计学分析师是一套高级工具,用于分析空间数据并使用 ESRI ArcMap 软件中提供的统计和确定性方法生成表面模型。它使我们能够根据在选定点测量的数据创建插值模型。该软件还提供了一些工具,可用于分析数据变异性、设置数据限制和检查全局趋势,以及创建预测地图、估计标准误差和概率、进行各种表面可视化处理、分析空间自相关和多个数据集之间的相关性。可以使用确定性方法(提供表面连续性)和随机技术(如克里金法)对数据进行插值,这些技术基于考虑数据自相关并提供预期插值误差的统计模型。地质统计学分析师的这些特性使其成为地球电离层建模和分析的有价值工具。我们的研究旨在测试其在研究电离层,特别是电离层干扰方面的适用性。作为原始源数据,我们使用全球导航卫星系统(GNSS)衍生的电离层总电子含量。本文比较了地质统计学分析师中提供的各种插值方法开发的电离层模型(地图)。比较是基于几个可以提供插值误差统计特征的指标。在本贡献中,我们使用了我们自己的方法,即估计质量的参数评估(MPQE)。在这里,我们呈现了不同电离层状态的建模结果的分析和讨论:在 2015 年圣帕特里克节地磁暴的干扰日、风暴前一天的一个安静日和风暴发生后的一天,反映了电离层恢复阶段。最后,选择并呈现了最佳插值方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1660/7284842/9538c7cac099/sensors-20-02840-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验