Suppr超能文献

基于临床和形态学特征的机器学习在颅内动脉瘤稳定性评估中的应用。

Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features.

机构信息

Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100050, China.

出版信息

Transl Stroke Res. 2020 Dec;11(6):1287-1295. doi: 10.1007/s12975-020-00811-2. Epub 2020 May 19.

Abstract

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806-0.893), 0.858 (95 %CI 0.816-0.900), and 0.867 (95% CI 0.828-0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.

摘要

机器学习(ML)作为一种新方法,可以帮助临床医生应对未破裂颅内动脉瘤(IA)稳定性评估的挑战。我们开发了多个用于 IA 稳定性评估的 ML 模型,并比较了它们的性能。我们纳入了 1897 例连续的不稳定(n=528)和稳定(n=1539)IA 患者。提取了 13 个患者特定的临床特征和 18 个动脉瘤形态特征,以生成支持向量机(SVM)、随机森林(RF)和前馈人工神经网络(ANN)模型。比较了这些模型在 IA 稳定性评估中的判别性能与统计逻辑回归(LR)模型和 PHASES 评分。基于测试集中每个模型的接收者操作特征(ROC)曲线和曲线下面积(AUC)值,RF、SVM 和 ANN 的 AUC 值分别为 0.850(95%CI 0.806-0.893)、0.858(95%CI 0.816-0.900)和 0.867(95%CI 0.828-0.906),表明具有良好的判别能力。与统计 LR 和 PHASES 评分相比,所有 ML 模型均表现出更好的性能(AUC 值分别为 0.830 和 0.589;RF 与 PHASES 相比,P<0.001;RF 与 LR 相比,P=0.038)。有助于稳定性判别特征包括 3 个临床特征(位置、侧壁/分叉类型和症状存在)和 3 个形态特征(波动指数、高宽比和不规则性)。这些发现表明 ML 具有增强 IA 稳定性评估临床决策过程的潜力,这可能使未来 IA 患者的管理更加优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验