Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
Department of Medical Imaging, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
Eur Radiol. 2020 Sep;30(9):5170-5182. doi: 10.1007/s00330-020-06886-7. Epub 2020 Apr 29.
To build models based on conventional logistic regression (LR) and machine learning (ML) algorithms combining clinical, morphological, and hemodynamic information to predict individual rupture status of unruptured intracranial aneurysms (UIAs), afterwards tested in internal and external validation datasets.
Patients with intracranial aneurysms diagnosed by computed tomography angiography and confirmed by invasive cerebral angiograph or clipping surgery were included. The prediction models were developed based on clinical, aneurysm morphological, and hemodynamic parameters by conventional LR and ML methods.
The training, internal validation, and external validation cohorts were composed of 807 patients, 200 patients, and 108 patients, respectively. The area under curves (AUCs) of conventional LR models 1 (clinical), 2 (clinical and aneurysm morphological), and 3 (clinical, aneurysm morphological and hemodynamic characteristics) were 0.608, 0.765, and 0.886, respectively (all p < 0.05). The AUCs of ML models using random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM) were 0.871, 0.851, and 0.863, respectively. There were no difference among AUCs of conventional LR, RF, and SVM (all p > 0.05/6), while the AUC of MLP was lower than that of conventional LR (p = 0.0055).
Hemodynamic parameters play an important role in the prediction performance of the models. ML methods cannot outperform conventional LR in prediction models for rupture status of UIAs integrating clinical, aneurysm morphological, and hemodynamic parameters.
• The addition of hemodynamic parameters can improve prediction performance for rupture status of unruptured intracranial aneurysms. • Machine learning algorithms cannot outperform conventional logistic regression in prediction models for rupture status integrating clinical, aneurysm morphological, and hemodynamic parameters. • Models integrating clinical, aneurysm morphological, and hemodynamic parameters may help choose the optimal management.
建立基于传统逻辑回归(LR)和机器学习(ML)算法的模型,结合临床、形态和血流动力学信息来预测未破裂颅内动脉瘤(UIAs)的个体破裂状态,然后在内部和外部验证数据集进行测试。
纳入经计算机断层血管造影(CTA)诊断并经有创性脑血管造影或夹闭术证实的颅内动脉瘤患者。通过传统的 LR 和 ML 方法,基于临床、动脉瘤形态和血流动力学参数来建立预测模型。
训练、内部验证和外部验证队列分别由 807 例、200 例和 108 例患者组成。传统 LR 模型 1(临床)、2(临床和动脉瘤形态)和 3(临床、动脉瘤形态和血流动力学特征)的曲线下面积(AUC)分别为 0.608、0.765 和 0.886(均 P<0.05)。采用随机森林(RF)、多层感知机(MLP)和支持向量机(SVM)的 ML 模型的 AUC 分别为 0.871、0.851 和 0.863。LR、RF 和 SVM 的 AUC 之间无差异(均 P>0.05/6),而 MLP 的 AUC 低于 LR(P=0.0055)。
血流动力学参数在模型的预测性能中起重要作用。在整合临床、动脉瘤形态和血流动力学参数的 UIAs 破裂状态预测模型中,ML 方法的预测性能并不优于传统 LR。
血流动力学参数的增加可以提高未破裂颅内动脉瘤破裂状态的预测性能。
机器学习算法在整合临床、动脉瘤形态和血流动力学参数的破裂状态预测模型中无法优于传统逻辑回归。
整合临床、动脉瘤形态和血流动力学参数的模型可能有助于选择最佳治疗方案。