Suppr超能文献

使用机器学习对颅内动脉瘤血管内治疗的结果预测。

Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.

机构信息

Departments of1Mechanical & Aerospace Engineering.

2Canon Stroke and Vascular Research Center, University at Buffalo, the State University of New York, Buffalo, New York.

出版信息

Neurosurg Focus. 2018 Nov 1;45(5):E7. doi: 10.3171/2018.8.FOCUS18332.

Abstract

OBJECTIVEFlow diverters (FDs) are designed to occlude intracranial aneurysms (IAs) while preserving flow to essential arteries. Incomplete occlusion exposes patients to risks of thromboembolic complications and rupture. A priori assessment of FD treatment outcome could enable treatment optimization leading to better outcomes. To that end, the authors applied image-based computational analysis to clinically FD-treated aneurysms to extract information regarding morphology, pre- and post-treatment hemodynamics, and FD-device characteristics and then used these parameters to train machine learning algorithms to predict 6-month clinical outcomes after FD treatment.METHODSData were retrospectively collected for 84 FD-treated sidewall aneurysms in 80 patients. Based on 6-month angiographic outcomes, IAs were classified as occluded (n = 63) or residual (incomplete occlusion, n = 21). For each case, the authors modeled FD deployment using a fast virtual stenting algorithm and hemodynamics using image-based computational fluid dynamics. Sixteen morphological, hemodynamic, and FD-based parameters were calculated for each aneurysm. Aneurysms were randomly assigned to a training or testing cohort in approximately a 3:1 ratio. The Student t-test and Mann-Whitney U-test were performed on data from the training cohort to identify significant parameters distinguishing the occluded from residual groups. Predictive models were trained using 4 types of supervised machine learning algorithms: logistic regression (LR), support vector machine (SVM; linear and Gaussian kernels), K-nearest neighbor, and neural network (NN). In the testing cohort, the authors compared outcome prediction by each model trained using all parameters versus only the significant parameters.RESULTSThe training cohort (n = 64) consisted of 48 occluded and 16 residual aneurysms and the testing cohort (n = 20) consisted of 15 occluded and 5 residual aneurysms. Significance tests yielded 2 morphological (ostium ratio and neck ratio) and 3 hemodynamic (pre-treatment inflow rate, post-treatment inflow rate, and post-treatment aneurysm averaged velocity) discriminants between the occluded (good-outcome) and the residual (bad-outcome) group. In both training and testing, all the models trained using all 16 parameters performed better than all the models trained using only the 5 significant parameters. Among the all-parameter models, NN (AUC = 0.967) performed the best during training, followed by LR and linear SVM (AUC = 0.941 and 0.914, respectively). During testing, NN and Gaussian-SVM models had the highest accuracy (90%) in predicting occlusion outcome.CONCLUSIONSNN and Gaussian-SVM models incorporating all 16 morphological, hemodynamic, and FD-related parameters predicted 6-month occlusion outcome of FD treatment with 90% accuracy. More robust models using the computational workflow and machine learning could be trained on larger patient databases toward clinical use in patient-specific treatment planning and optimization.

摘要

目的

血流导向装置(FD)旨在闭塞颅内动脉瘤(IA),同时保持对重要动脉的血流。不完全闭塞使患者面临血栓栓塞并发症和破裂的风险。对 FD 治疗结果进行事先评估可以优化治疗,从而获得更好的结果。为此,作者应用基于图像的计算分析对临床 FD 治疗的动脉瘤进行了分析,以提取形态学、治疗前后血流动力学以及 FD 设备特征方面的信息,然后使用这些参数训练机器学习算法,以预测 FD 治疗后 6 个月的临床结果。

方法

回顾性收集了 80 名患者 84 个侧壁动脉瘤的 FD 治疗数据。根据 6 个月的血管造影结果,将 IA 分为闭塞(n=63)或残留(不完全闭塞,n=21)。对于每个病例,作者使用快速虚拟支架置入算法对 FD 放置进行建模,并使用基于图像的计算流体动力学对血流动力学进行建模。为每个动脉瘤计算了 16 个形态学、血流动力学和 FD 相关参数。动脉瘤被随机分配到训练或测试队列中,比例约为 3:1。使用学生 t 检验和曼-惠特尼 U 检验对训练队列中的数据进行了分析,以确定区分闭塞和残留组的显著参数。使用 4 种监督机器学习算法(逻辑回归(LR)、支持向量机(SVM;线性和高斯核)、K 最近邻和神经网络(NN))对数据进行了训练。在测试队列中,作者比较了使用所有参数和仅显著参数训练的每个模型的结果预测。

结果

训练队列(n=64)包括 48 个闭塞和 16 个残留动脉瘤,测试队列(n=20)包括 15 个闭塞和 5 个残留动脉瘤。显著性检验得出了 2 个形态学(口部比和颈部比)和 3 个血流动力学(治疗前流入率、治疗后流入率和治疗后动脉瘤平均速度)参数,用于区分闭塞(良好结果)和残留(不良结果)组。在训练和测试中,使用所有 16 个参数训练的所有模型均优于仅使用 5 个显著参数训练的所有模型。在所有参数模型中,在训练期间,NN(AUC=0.967)表现最好,其次是 LR 和线性 SVM(AUC=0.941 和 0.914)。在测试中,NN 和高斯 SVM 模型在预测 FD 治疗的闭塞结果方面具有最高的准确性(90%)。使用计算工作流程和机器学习的更稳健的模型可以在更大的患者数据库上进行训练,以便在患者特异性治疗计划和优化中进行临床应用。

相似文献

引用本文的文献

本文引用的文献

4
5
An introduction and overview of machine learning in neurosurgical care.神经外科护理中机器学习的介绍与概述。
Acta Neurochir (Wien). 2018 Jan;160(1):29-38. doi: 10.1007/s00701-017-3385-8. Epub 2017 Nov 13.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验