Suppr超能文献

通过冲击恢复实验首次从哈泰尔卡陨石中合成出独特的二十面体相。

First synthesis of a unique icosahedral phase from the Khatyrka meteorite by shock-recovery experiment.

作者信息

Hu Jinping, Asimow Paul D, Ma Chi, Bindi Luca

机构信息

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Firenze I-50121, Italy.

出版信息

IUCrJ. 2020 Mar 26;7(Pt 3):434-444. doi: 10.1107/S2052252520002729. eCollection 2020 May 1.

Abstract

Icosahedral quasicrystals (i-phases) in the Al-Cu-Fe system are of great interest because of their perfect quasicrystalline structure and natural occurrences in the Khatyrka meteorite. The natural quasicrystal of composition AlCuFe, referred to as i-phase II, is unique because it deviates significantly from the stability field of i-phase and has not been synthesized in a laboratory setting to date. Synthetic i-phases formed in shock-recovery experiments present a novel strategy for exploring the stability of new quasicrystal compositions and prove the impact origin of natural quasicrystals. In this study, an Al-Cu-W graded density impactor (GDI, originally manufactured as a ramp-generating impactor but here used as a target) disk was shocked to sample a full range of Al/Cu starting ratios in an Fe-bearing 304 stainless-steel target chamber. In a strongly deformed region of the recovered sample, reactions between the GDI and the steel produced an assemblage of co-existing AlCuFeCr i-phase II + stolperite (β, AlCu) + khatyrkite (θ, AlCu), an exact match to the natural i-phase II assemblage in the meteorite. In a second experiment, the continuous interface between the GDI and steel formed another more Fe-rich quinary i-phase (AlFeCuCrNi), together with stolperite and hollisterite (λ, AlFe), which is the expected assemblage at phase equilibrium. This study is the first laboratory reproduction of i-phase II with its natural assemblage. It suggests that the field of thermodynamically stable icosahedrite (AlCuFe) could separate into two disconnected fields under shock pressure above 20 GPa, leading to the co-existence of Fe-rich and Fe-poor i-phases like the case in Khatyrka. In light of this, shock-recovery experiments do indeed offer an efficient method of constraining the impact conditions recorded by quasicrystal-bearing meteorite, and exploring formation conditions and mechanisms leading to quasicrystals.

摘要

铝铜铁系中的二十面体准晶体(i相)因其完美的准晶结构以及在哈泰尔卡陨石中的天然存在而备受关注。成分AlCuFe的天然准晶体,即i相II,十分独特,因为它显著偏离了i相的稳定域,且迄今为止尚未在实验室环境中合成。在冲击恢复实验中形成的合成i相为探索新准晶成分的稳定性提供了一种新策略,并证明了天然准晶体的撞击成因。在本研究中,将一个铝铜钨梯度密度撞击器(GDI,最初制造为产生斜坡的撞击器,但在此用作靶材)圆盘进行冲击,以在含Fe的304不锈钢靶室中获取一系列全范围的Al/Cu起始比例样本。在回收样品的一个强烈变形区域中,GDI与钢之间的反应产生了共存的AlCuFeCr i相II + 斯托福石(β,AlCu)+ 哈泰尔卡石(θ,AlCu)组合,与陨石中的天然i相II组合完全匹配。在第二个实验中,GDI与钢之间的连续界面形成了另一种更富铁的五元i相(AlFeCuCrNi),以及斯托福石和霍利斯特石(λ,AlFe),这是相平衡时预期的组合。本研究首次在实验室中重现了i相II及其天然组合。这表明,在高于20 GPa的冲击压力下,热力学稳定的二十面体准晶(AlCuFe)领域可能会分离成两个不相连的领域,导致像哈泰尔卡陨石那样富铁和贫铁i相共存。有鉴于此,冲击恢复实验确实提供了一种有效的方法来约束含准晶体陨石所记录的撞击条件,并探索导致准晶体形成的条件和机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fac6/7201281/ad7bce2ec06e/m-07-00434-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验