Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada.
Department of Biology, Dalhousie University, Halifax, NS, Canada.
Mol Ecol. 2020 Jun;29(12):2160-2175. doi: 10.1111/mec.15480. Epub 2020 Jun 21.
As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean F = 0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans-Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1-3 Mbp) on four chromosomes (Ssa06, Ssa13, Ssa16 and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium, despite no significant reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near-fixed and potentially adaptive trans-Atlantic differences concurrent with a background of high genome-wide differentiation supports subspecies designation in Atlantic salmon.
随着种群的分化,许多过程都可以塑造基因组分化的模式。高分化区域可能是由于选择作用于特定的基因座而产生的,也可能是由于附近基因座的遗传连锁不平衡,或者是由于对有害等位基因的反复选择(连锁背景选择);然后,在重组减少的区域,这种分化可能会进一步提高。欧洲和北美的大西洋鲑鱼(Salmo salar)分化超过 60 万年前,尽管有一些次要接触的证据,但大多数遗传数据表明,谱系之间存在大量分化。这种具有潜在基因流的深度分化为研究不同机制在早期物种形成过程中塑造基因组景观的作用提供了机会。在这里,我们使用了 184,295 个单核苷酸多态性(SNP)和 80 个群体,调查了大西洋两岸分化的基因组景观,重点研究了高度分化的区域及其形成过程。我们发现了大陆之间存在高(平均 F 为 0.26)和不均匀的基因组分化的证据。与跨大西洋分化相关的基因组区域的大小从单个基因座(SNP)内的重要基因到四个染色体上的大区域(1-3 Mbp)不等(Ssa06、Ssa13、Ssa16 和 Ssa19)。这些区域显示出与选择一致的特征,包括高连锁不平衡,尽管重组没有显著减少。与分化区域相关的基因和功能富集过程可能突出了海洋导航和寄生虫抗性方面的大陆差异。我们的研究结果为大西洋鲑鱼不同大陆之间潜在的差异提供了深入的了解,并提供了近固定的、可能具有适应性的跨大西洋差异的证据,同时存在高全基因组分化的背景,支持大西洋鲑鱼亚种的指定。