Suppr超能文献

具有伤害感受和压力解码能力的人工触觉感知神经元。

Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities.

机构信息

School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China.

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26258-26266. doi: 10.1021/acsami.0c04718. Epub 2020 May 29.

Abstract

The neural system is a multifunctional perceptual learning system. Our brain can perceive different kinds of information to form senses, including touch, sight, hearing, and so on. Mimicking such perceptual learning systems is critical for neuromorphic platform applications. Here, an artificial tactile perceptual neuron is realized by utilizing electronic skins (E-skin) with oxide neuromorphic transistors, and this artificial tactile perceptual neuron successfully simulates biological tactile afferent nerves. First, the E-skin device is constructed using microstructured polydimethylsiloxane membranes coated with Ag/indium tin oxide (ITO) layers, exhibiting good sensitivities of ∼2.1 kPa and fast response time of tens of milliseconds. Then, the chitosan-based electrolyte-gated ITO neuromorphic transistor is fabricated and exhibits high performance and synaptic responses. Finally, the integrated artificial tactile perceptual neuron demonstrates pressure excitatory postsynaptic current and paired-pulse facilitation. The artificial tactile perceptual neuron is featured with low energy consumption as low as ∼0.7 nJ. Moreover, it can mimic acute and chronic pain and nociceptive characteristics of allodynia and hyperalgesia in biological nociceptors. Interestingly, the artificial tactile perceptual neuron can employ "Morse code" pressure-interpreting scheme. This simple and low-cost approach has excellent potential for applications including but not limited to intelligent humanoid robots and replacement neuroprosthetics.

摘要

神经系统是一个多功能的感知学习系统。我们的大脑可以感知到不同种类的信息,形成感觉,包括触觉、视觉、听觉等。模仿这样的感知学习系统对于神经形态平台的应用至关重要。在这里,通过利用具有氧化物神经形态晶体管的电子皮肤 (E-skin),实现了一种人工触觉感知神经元,该人工触觉感知神经元成功模拟了生物触觉传入神经。首先,使用涂有 Ag/氧化铟锡 (ITO) 层的微结构化聚二甲基硅氧烷 (PDMS) 膜构建了 E-skin 设备,其灵敏度约为 2.1 kPa,响应时间快至数十毫秒。然后,制造了基于壳聚糖的电解质门控 ITO 神经形态晶体管,其具有优异的性能和突触响应。最后,集成的人工触觉感知神经元表现出压力兴奋性突触后电流和成对脉冲易化。人工触觉感知神经元的能量消耗低至约 0.7 nJ。此外,它还可以模拟生物伤害感受器中的急性和慢性疼痛以及痛觉过敏和痛觉过强的特征。有趣的是,人工触觉感知神经元可以采用“莫尔斯电码”压力解释方案。这种简单且低成本的方法具有极好的应用潜力,包括但不限于智能人形机器人和替代神经假体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验