Graduate Program in Biology, North Carolina State University, Raleigh, North Carolina.
W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina.
J Neurophysiol. 2020 Jun 1;123(6):2465-2475. doi: 10.1152/jn.00210.2020. Epub 2020 May 20.
The menstrual cycle in humans and its analogous cycle in rodents, the estrous cycle, modulate brain function and behavior. Both cycles are characterized by the cyclical fluctuation of ovarian hormones including estrogens such as estradiol. Estradiol induces cycle- and sex-dependent differences in the phenotype and incidence of many behaviors, including those related to reward and motivation. The nucleus accumbens core (AcbC), a limbic and premotor system nexus region, directly regulates these behaviors. We previously showed that the estrous cycle modulates intrinsic excitability and excitatory synapse properties of medium spiny neurons (MSNs) in the AcbC. The identity of the underlying hormone mechanism is unknown, with estradiol being a prime candidate. The present study tests the hypothesis that estradiol induces estrous cycle-relevant differences in MSN electrophysiology. To accomplish this goal, a time- and dose-dependent estradiol replacement paradigm designed to simulate the rise of circulating estradiol levels across the estrous cycle was employed in ovariectomized adult female rats as well as a vehicle control group. Estradiol replacement decreased MSN excitability by modulating properties such as resting membrane potential, input resistance in both the linear and rectified ranges, and rheobase compared with vehicle-treated females. These differences in MSN excitability mimic those previously described regarding estrous cycle effects on MSN electrophysiology. Excitatory synapse properties were not modulated in response to this estradiol replacement paradigm. These data are the first to demonstrate that an estrous cycle-relevant estradiol exposure modulates MSN electrophysiology, providing evidence of the fundamental neuroendocrine mechanisms regulating the AcbC. The present study shows, for the first time, that an estrous cycle-relevant estradiol exposure modulates nucleus accumbens neuron excitability. This evidence provides insight into the neuroendocrine mechanisms by which estradiol cyclically alters neuron properties during the estrous cycle. Overall, these data emphasize the significant influence of hormone action in the brain and especially individual neuron physiology.
人类的月经周期及其类似的啮齿动物发情周期调节大脑功能和行为。这两个周期的特征是卵巢激素的周期性波动,包括雌激素如雌二醇。雌二醇诱导许多行为的周期和性别依赖性差异,包括与奖励和动机相关的行为。伏隔核核心(AcbC),一个边缘和运动前系统连接区域,直接调节这些行为。我们之前表明,发情周期调节 AcbC 中中脑多巴胺神经元(MSNs)的固有兴奋性和兴奋性突触特性。潜在激素机制的身份尚不清楚,雌二醇是主要候选者。本研究检验了以下假设:雌二醇诱导 MSN 电生理学的发情周期相关差异。为了实现这一目标,采用了一种时间和剂量依赖性的雌二醇替代范式,旨在模拟发情周期中循环雌二醇水平的升高,用于去卵巢成年雌性大鼠以及载体对照组。与接受载体治疗的雌性相比,雌二醇替代通过调节静息膜电位、线性和整流范围的输入电阻以及 rheobase 等特性来降低 MSN 的兴奋性。这些 MSN 兴奋性的差异类似于先前描述的发情周期对 MSN 电生理学的影响。兴奋性突触特性没有响应这种雌二醇替代范式而改变。这些数据首次表明,发情周期相关的雌二醇暴露调节 MSN 电生理学,为调节伏隔核的基本神经内分泌机制提供了证据。本研究首次表明,发情周期相关的雌二醇暴露调节伏隔核神经元兴奋性。这一证据提供了关于雌二醇在发情周期期间周期性改变神经元特性的神经内分泌机制的深入了解。总的来说,这些数据强调了激素作用在大脑中的重要影响,特别是个体神经元生理学。
J Neurophysiol. 2020-6-1
Eur J Neurosci. 2020-7
Eur J Neurosci. 2024-12
Neurosci Biobehav Rev. 2023-10
Biol Sex Differ. 2023-6-24
Front Cell Neurosci. 2023-2-14
Eur J Neurosci. 2020-7