Proaño Stephanie B, Morris Hannah J, Kunz Lindsey M, Dorris David M, Meitzen John
Graduate Program in Biology, North Carolina State University , Raleigh, North Carolina.
W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.
J Neurophysiol. 2018 Sep 1;120(3):1356-1373. doi: 10.1152/jn.00263.2018. Epub 2018 Jun 27.
Naturally occurring hormone cycles in adult female humans and rodents create a dynamic neuroendocrine environment. These cycles include the menstrual cycle in humans and its counterpart in rodents, the estrous cycle. These hormone fluctuations induce sex differences in the phenotypes of many behaviors, including those related to motivation, and associated disorders such as depression and addiction. This suggests that the neural substrate instrumental for these behaviors, including the nucleus accumbens core (AcbC), likewise differs between estrous cycle phases. It is unknown whether the electrophysiological properties of AcbC output neurons, medium spiny neurons (MSNs), change between estrous cycle phases. This is a critical knowledge gap given that MSN electrophysiological properties are instrumental for determining AcbC output to efferent targets. Here we test whether the intrinsic electrophysiological properties of adult rat AcbC MSNs differ across female estrous cycle phases and from males. We recorded MSNs with whole cell patch-clamp technique in two experiments, the first using gonad-intact adult males and females in differing phases of the estrous cycle and the second using gonadectomized males and females in which the estrous cycle was eliminated. MSN intrinsic electrophysiological and excitatory synaptic input properties robustly changed between female estrous cycle phases and males. Sex differences in MSN electrophysiology disappeared when the estrous cycle was eliminated. These novel findings indicate that AcbC MSN electrophysiological properties change across the estrous cycle, providing a new framework for understanding how biological sex and hormone cyclicity regulate motivated behaviors and other AcbC functions and disorders. NEW & NOTEWORTHY This research is the first demonstration that medium spiny neuron electrophysiological properties change across adult female hormone cycle phases in any striatal region. This influence of estrous cycle engenders sex differences in electrophysiological properties that are eliminated by gonadectomy. Broadly, these findings indicate that adult female hormone cycles are an important factor for neurophysiology.
成年女性和啮齿动物体内自然发生的激素循环会创造一个动态的神经内分泌环境。这些循环包括人类的月经周期及其在啮齿动物中的对应周期,即发情周期。这些激素波动会在许多行为的表型中引发性别差异,包括与动机相关的行为,以及诸如抑郁和成瘾等相关疾病。这表明,对这些行为起作用的神经基质,包括伏隔核核心(AcbC),在发情周期各阶段也存在差异。目前尚不清楚AcbC输出神经元(即中等棘状神经元,MSNs)的电生理特性在发情周期各阶段是否会发生变化。鉴于MSN的电生理特性对于确定AcbC向传出靶点的输出至关重要,这是一个关键的知识空白。在这里,我们测试成年大鼠AcbC MSNs的内在电生理特性在雌性发情周期各阶段是否与雄性不同。我们在两个实验中采用全细胞膜片钳技术记录MSNs,第一个实验使用处于发情周期不同阶段的性腺完整的成年雄性和雌性大鼠,第二个实验使用去除性腺的雄性和雌性大鼠,其中发情周期已被消除。MSN的内在电生理和兴奋性突触输入特性在雌性发情周期各阶段和雄性之间发生了显著变化。当发情周期消除时,MSN电生理的性别差异消失。这些新发现表明,AcbC MSN的电生理特性在发情周期中会发生变化,为理解生物性别和激素周期性如何调节动机行为以及其他AcbC功能和疾病提供了一个新框架。新内容与值得关注之处 本研究首次证明,在任何纹状体区域,中等棘状神经元的电生理特性在成年雌性激素循环各阶段会发生变化。发情周期的这种影响导致电生理特性出现性别差异,而去势可消除这种差异。总体而言,这些发现表明成年雌性激素循环是神经生理学的一个重要因素。
J Neurophysiol. 2020-6-1
Eur J Neurosci. 2020-7
Brain Struct Funct. 2025-8-6
Eur J Neurosci. 2024-12
Front Behav Neurosci. 2024-9-18
Front Cell Neurosci. 2024-7-8
Horm Behav. 2017-12-14
Trends Neurosci. 2017-11
J Neurosci. 2017-11-1
J Neurosci. 2016-11-23