Technological School of Electronic Systems, Technical University of Sofia, Sofia, Bulgaria.
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
JCO Clin Cancer Inform. 2020 May;4:464-471. doi: 10.1200/CCI.19.00171.
Copy-number profiling of multiple individual cells from sparse sequencing may be used to reveal a detailed picture of genomic heterogeneity and clonal organization in a tissue biopsy specimen. We sought to provide a comprehensive computational pipeline for single-cell genomics, to facilitate adoption of this molecular technology for basic and translational research.
The pipeline comprises software tools programmed in Python and in R and depends on Bowtie, HISAT2, Matplotlib, and Qt. It is installed and used with Anaconda.
Here we describe a complete pipeline for sparse single-cell genomic data, encompassing all steps of single-nucleus DNA copy-number profiling, from raw sequence processing to clonal structure analysis and visualization. For the latter, a specialized graphical user interface termed the single-cell genome viewer (SCGV) is provided. With applications to cancer diagnostics in mind, the SCGV allows for zooming and linkage to the University of California at Santa Cruz Genome Browser from each of the multiple integrated views of single-cell copy-number profiles. The latter can be organized by clonal substructure or by any of the associated metadata such as anatomic location and histologic characterization.
The pipeline is available as open-source software for Linux and OS X. Its modular structure, extensive documentation, and ease of deployment using Anaconda facilitate its adoption by researchers and practitioners of single-cell genomics. With open-source availability and Massachusetts Institute of Technology licensing, it provides a basis for additional development by the cancer bioinformatics community.
从稀疏测序的多个单个细胞中进行拷贝数分析,可能有助于揭示组织活检标本中基因组异质性和克隆组织的详细情况。我们旨在为单细胞基因组学提供一个全面的计算流程,以促进这项分子技术在基础和转化研究中的应用。
该流程包括用 Python 和 R 编写的软件工具,依赖于 Bowtie、HISAT2、Matplotlib 和 Qt。它与 Anaconda 一起安装和使用。
在这里,我们描述了一个完整的稀疏单细胞基因组数据管道,涵盖了从原始序列处理到克隆结构分析和可视化的单细胞 DNA 拷贝数分析的所有步骤。后者提供了一个专门的图形用户界面,称为单细胞基因组查看器(SCGV)。考虑到癌症诊断的应用,SCGV 允许从单细胞拷贝数图谱的多个集成视图中的每个视图进行缩放,并链接到加利福尼亚大学圣克鲁兹基因组浏览器。后者可以按克隆子结构或任何相关元数据(如解剖位置和组织学特征)进行组织。
该管道作为 Linux 和 OS X 的开源软件提供。其模块化结构、广泛的文档以及使用 Anaconda 进行的轻松部署,有助于单细胞基因组学的研究人员和从业人员采用。凭借开源可用性和麻省理工学院的许可,它为癌症生物信息学社区提供了进一步开发的基础。