Suppr超能文献

靶向进化以抑制抗生素耐药性。

Targeting evolution to inhibit antibiotic resistance.

机构信息

Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

FEBS J. 2020 Oct;287(20):4341-4353. doi: 10.1111/febs.15370. Epub 2020 Jun 8.

Abstract

Drug-resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an 'optimal' evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti-evolution drugs from the laboratory to the clinic.

摘要

耐药细菌感染已导致全球性健康危机。尽管人们投入大量精力开发不易受现有耐药机制影响的新型抗生素或变体,但历史表明,仅靠这种策略不太可能解决耐药问题。在这里,我们讨论了将抑制进化作为一种策略,该策略与抗生素联合使用,可能有助于解决耐药问题。尽管突变是耐药性发展的主要驱动因素,但攻击病原体遗传多样化的驱动因素尚未得到充分探索。细菌具有提高突变率的主动机制,尤其是在真核宿主细胞内复制或暴露于抗生素时。我们强调了这些促突变蛋白(可进化性因素)的存在如何为有效抑制耐药性发展提供了一个可以利用的机会。为了帮助将这一想法从概念转化为实践,我们首先描述了一套标准,即一个“理想的”可进化性因素要成为可行的治疗靶点,可能需要满足哪些条件。然后,我们讨论了一些已知的突变机制的复杂性,并评估了它们作为抑制进化的药物靶点的潜力。原则上,正如最近的研究表明的那样,我们认为抑制这些和其他可进化性因素应能减少耐药性的发展。最后,我们讨论了将抗进化药物从实验室过渡到临床的挑战。

相似文献

1
Targeting evolution to inhibit antibiotic resistance.
FEBS J. 2020 Oct;287(20):4341-4353. doi: 10.1111/febs.15370. Epub 2020 Jun 8.
2
Inhibiting the Evolution of Antibiotic Resistance.
Mol Cell. 2019 Jan 3;73(1):157-165.e5. doi: 10.1016/j.molcel.2018.10.015. Epub 2018 Nov 15.
3
[Resistance acquisition via the bacterial SOS response: the inducive role of antibiotics].
Med Sci (Paris). 2012 Feb;28(2):179-84. doi: 10.1051/medsci/2012282016. Epub 2012 Feb 27.
4
The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.
Proc Biol Sci. 2015 Oct 7;282(1816):20150885. doi: 10.1098/rspb.2015.0885.
6
Stress-Induced Mutagenesis, Gambler Cells, and Stealth Targeting Antibiotic-Induced Evolution.
mBio. 2022 Jun 28;13(3):e0107422. doi: 10.1128/mbio.01074-22. Epub 2022 Jun 6.
7
Antibiotics: Combatting Tolerance To Stop Resistance.
mBio. 2019 Sep 10;10(5):e02095-19. doi: 10.1128/mBio.02095-19.
8
Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.
J Antibiot (Tokyo). 2018 Feb;71(2):279-286. doi: 10.1038/ja.2017.108. Epub 2017 Sep 20.
9
Quinolone Resistance Reversion by Targeting the SOS Response.
mBio. 2017 Oct 10;8(5):e00971-17. doi: 10.1128/mBio.00971-17.
10
Selection of antibiotic-resistant pathogens in the community.
Pediatr Infect Dis J. 2006 Oct;25(10):974-6. doi: 10.1097/01.inf.0000239270.33190.71.

引用本文的文献

1
Bioenergetic stress potentiates antimicrobial resistance and persistence.
Nat Commun. 2025 Jun 9;16(1):5111. doi: 10.1038/s41467-025-60302-6.
3
Snapshots of SOS response reveal structural requisites for LexA autoproteolysis.
iScience. 2025 Jan 2;28(2):111726. doi: 10.1016/j.isci.2024.111726. eCollection 2025 Feb 21.
4
Integrative genomics would strengthen AMR understanding through ONE health approach.
Heliyon. 2024 Jul 17;10(14):e34719. doi: 10.1016/j.heliyon.2024.e34719. eCollection 2024 Jul 30.
5
The RecA-NT homology motif in ImuB mediates the interaction with ImuA', which is essential for DNA damage-induced mutagenesis.
J Biol Chem. 2025 Feb;301(2):108108. doi: 10.1016/j.jbc.2024.108108. Epub 2024 Dec 18.
6
A small molecule that inhibits the evolution of antibiotic resistance.
NAR Mol Med. 2024 Jan 23;1(1):ugae001. doi: 10.1093/narmme/ugae001. eCollection 2024 Jan.
7
The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation.
Nat Struct Mol Biol. 2024 Oct;31(10):1522-1531. doi: 10.1038/s41594-024-01317-3. Epub 2024 May 16.
9
The global RNA-RNA interactome of unveils a small RNA regulator of cell division.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2317322121. doi: 10.1073/pnas.2317322121. Epub 2024 Feb 20.

本文引用的文献

1
Non-traditional Antibacterial Therapeutic Options and Challenges.
Cell Host Microbe. 2019 Jul 10;26(1):61-72. doi: 10.1016/j.chom.2019.06.004.
2
A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy.
Cell. 2019 Jun 27;178(1):152-159.e11. doi: 10.1016/j.cell.2019.05.028. Epub 2019 Jun 6.
3
Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response.
Mol Cell. 2019 May 16;74(4):785-800.e7. doi: 10.1016/j.molcel.2019.02.037. Epub 2019 Apr 1.
4
Deciphering Within-Host Microevolution of through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward.
Microbiol Mol Biol Rev. 2019 Mar 27;83(2). doi: 10.1128/MMBR.00062-18. Print 2019 May 15.
5
R-Loops as Cellular Regulators and Genomic Threats.
Mol Cell. 2019 Feb 7;73(3):398-411. doi: 10.1016/j.molcel.2019.01.024.
6
Drug combinations: a strategy to extend the life of antibiotics in the 21st century.
Nat Rev Microbiol. 2019 Mar;17(3):141-155. doi: 10.1038/s41579-018-0141-x. Epub 2019 Jan 25.
7
Bacteria-to-Human Protein Networks Reveal Origins of Endogenous DNA Damage.
Cell. 2019 Jan 10;176(1-2):127-143.e24. doi: 10.1016/j.cell.2018.12.008.
8
Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response.
Front Microbiol. 2018 Dec 18;9:2961. doi: 10.3389/fmicb.2018.02961. eCollection 2018.
9
Inhibiting the Evolution of Antibiotic Resistance.
Mol Cell. 2019 Jan 3;73(1):157-165.e5. doi: 10.1016/j.molcel.2018.10.015. Epub 2018 Nov 15.
10
Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates.
Nucleic Acids Res. 2018 Sep 28;46(17):9236-9250. doi: 10.1093/nar/gky751.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验