Djilali Larbi, Sanchez Edgar N, Ornelas-Tellez Fernando, Ruz-Hernandez Jose A, Ricalde Luis J
Faculty of Engineering, Universidad Autonoma del Carmen, Carmen, 24180, Campeche, Mexico.
Department of Electrical Engineering, Cinvestav Guadalajara, Zapopan, 45019, Mexico.
ISA Trans. 2021 Jul;113:111-126. doi: 10.1016/j.isatra.2020.05.021. Epub 2020 May 16.
The Low-Voltage Ride-Through (LVRT) capacity of the Doubly Fed Induction Generator (DFIG) is one of the important requirements to ensure power systems stability, incorporating wind energy. While traditional control schemes present inappropriate performances under disturbances, this paper introduces a novel Neural Inverse Optimal Control (N-IOC) scheme for LVRT capacity enhancing. The developed controller is synthesized using recurrent high order neural network, which is utilized to build-up the DFIG and the DC-link dynamics. Based on such identifier, the proposed N-IOC is synthesized. This controller is experimentally validated on 1∕4 HP DFIG prototype considering various grid disturbances. Results illustrate the proposed controller effectiveness for LVRT enhancement without required decomposition process and/or any additional device.
双馈感应发电机(DFIG)的低电压穿越(LVRT)能力是确保包含风能的电力系统稳定性的重要要求之一。虽然传统控制方案在干扰下表现不佳,但本文引入了一种新颖的神经逆最优控制(N-IOC)方案来增强LVRT能力。所开发的控制器是使用递归高阶神经网络合成的,该网络用于建立DFIG和直流母线动态模型。基于这样的辨识器,合成了所提出的N-IOC。该控制器在考虑各种电网干扰的1∕4 HP DFIG原型上进行了实验验证。结果表明,所提出的控制器在无需分解过程和/或任何附加设备的情况下,对于增强LVRT具有有效性。