Gomila Rosa M, Frontera Antonio
Serveis Cientificotècnics, Universitat de les Illes Balears, Palma, Spain.
Department of Chemistry, Universitat de les Illes Balears, Palma, Spain.
Front Chem. 2020 May 6;8:395. doi: 10.3389/fchem.2020.00395. eCollection 2020.
A noble gas bond (also known in the literature as aerogen bond) can be defined as the attractive interaction between any element of group-18 acting as a Lewis acid and any electron rich atom of group of atoms, thus following the IUPAC recommendation available for similar π,σ-hole interactions involving elements of groups 17 (halogens) and 16 (chalcogens). A significant difference between noble gas bonding (NgB) and halogen (HaB) or chalcogen (ChB) bonding is that whilst the former is scarcely found in the literature, HaB and ChB are very common and their applications in important fields like catalysis, biochemistry or crystal engineering have exponentially grown in the last decade. This article combines theory and experiment to highlight the importance of non-covalent NgBs in the solid state of several xenon fluorides [XeF] were the central oxidation state of Xe varies from +2 to +6 and the number of fluorine atoms varies from n = 2 to 6. The compounds with an odd number of fluorine atoms ( = 3 and 5) are cationic ( = 1). The Inorganic Crystal Structural Database (ICSD) strongly evidences the relevance of NgBs in the solid state structures of xenon derivatives. The ability of Xe compounds to participate in π,σ-hole interactions has been studied using different types of electron donors (Lewis bases and anions) using DFT calculations (PBE1PBE-D3/def2-TZVP) and the molecular electrostatic potential (MEP) surfaces.
稀有气体键(在文献中也称为气原键)可定义为第18族的任何元素作为路易斯酸与任何富含电子的原子或原子团之间的吸引相互作用,因此遵循国际纯粹与应用化学联合会(IUPAC)针对涉及第17族(卤素)和第16族(硫属元素)元素的类似π、σ-空穴相互作用的建议。稀有气体键合(NgB)与卤素键合(HaB)或硫属元素键合(ChB)之间的一个显著差异在于,虽然前者在文献中很少被发现,但HaB和ChB非常常见,并且它们在催化、生物化学或晶体工程等重要领域的应用在过去十年中呈指数级增长。本文结合理论和实验,以突出几种氟化氙固态中非共价NgB的重要性,其中氙的中心氧化态从+2变化到+6,氟原子数从n = 2变化到6。氟原子数为奇数(= 3和5)的化合物是阳离子型(= 1)。无机晶体结构数据库(ICSD)有力地证明了NgB在氙衍生物固态结构中的相关性。使用不同类型的电子供体(路易斯碱和阴离子),通过密度泛函理论计算(PBE1PBE-D3/def2-TZVP)和分子静电势(MEP)表面,研究了氙化合物参与π、σ-空穴相互作用的能力。