Department of Physiology, Shiga University of Medical Science, Otsu, Japan.
Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan.
Br J Pharmacol. 2020 Aug;177(16):3811-3827. doi: 10.1111/bph.15105. Epub 2020 Jun 30.
Volatile anaesthetics have been shown to differentially modulate mammalian Shaker-related voltage-gated potassium (K 1.x) channels. This study was designed to investigate molecular and cellular mechanisms underlying the modulatory effects of desflurane or sevoflurane on human K 1.5 (hK 1.5) channels.
Thirteen single-point mutations were constructed within pore domain of hK 1.5 channel using site-directed mutagenesis. The effects of desflurane or sevoflurane on heterologously expressed wild-type and mutant hK 1.5 channels were examined by whole-cell patch-clamp technique. A computer simulation was conducted to predict the docking pose of desflurane or sevoflurane within hK 1.5 channel.
Both desflurane and sevoflurane increased hK 1.5 current at mild depolarizations but decreased it at strong depolarizations, indicating that these anaesthetics produce both stimulatory and inhibitory actions on hK 1.5 channels. The inhibitory effect of desflurane or sevoflurane on hK 1.5 channels arose primarily from its open-channel blocking action. The inhibitory action of desflurane or sevoflurane on hK 1.5 channels was significantly attenuated in T480A, V505A, and I508A mutant channels, compared with wild-type channel. Computational docking simulation predicted that desflurane or sevoflurane resides within the inner cavity of channel pore and has contact with Thr479, Thr480, Val505, and Ile508.
Desflurane and sevoflurane exert an open-channel blocking action on hK 1.5 channels by functionally interacting with specific amino acids located within the channel pore. This study thus identifies a novel molecular basis mediating inhibitory modulation of hK 1.5 channels by desflurane and sevoflurane.
挥发性麻醉剂已被证明可差异调节哺乳动物 Shaker 相关电压门控钾(K 1.x)通道。本研究旨在研究地氟烷或七氟醚对人 K 1.5(hK 1.5)通道的调节作用的分子和细胞机制。
使用定点诱变技术在 hK 1.5 通道的孔域内构建了 13 个单点突变。通过全细胞膜片钳技术检测地氟烷或七氟醚对异源表达的野生型和突变型 hK 1.5 通道的影响。进行计算机模拟以预测地氟烷或七氟醚在 hK 1.5 通道内的对接构象。
地氟烷和七氟醚均在轻度去极化时增加 hK 1.5 电流,但在强去极化时降低其电流,表明这些麻醉剂对 hK 1.5 通道既有刺激作用又有抑制作用。地氟烷或七氟醚对 hK 1.5 通道的抑制作用主要来自其开放通道阻断作用。与野生型通道相比,T480A、V505A 和 I508A 突变通道中地氟烷或七氟醚对 hK 1.5 通道的抑制作用明显减弱。计算对接模拟预测地氟烷或七氟醚位于通道孔的内腔内,并与 Thr479、Thr480、Val505 和 Ile508 接触。
地氟烷和七氟醚通过与位于通道孔内的特定氨基酸的功能相互作用,对 hK 1.5 通道产生开放通道阻断作用。因此,本研究确定了介导地氟烷和七氟醚对 hK 1.5 通道抑制调节的新分子基础。