Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília DF, Brasília, DF, Brazil.
Sci Rep. 2017 Jul 18;7(1):5734. doi: 10.1038/s41598-017-05896-8.
Membrane proteins are primary targets for most therapeutic indications in cancer and neurological diseases, binding over 50% of all known small molecule drugs. Understanding how such ligands impact membrane proteins requires knowledge on the molecular structure of ligand binding, a reasoning that has driven relentless efforts in drug discovery and translational research. Binding of small ligands appears however highly complex involving interaction to multiple transmembrane protein sites featuring single or multiple occupancy states. Within this scenario, looking for new developments in the field, we investigate the concentration-dependent binding of ligands to multiple saturable sites in membrane proteins. The study relying on docking and free-energy perturbation provides us with an extensive description of the probability density of protein-ligand states that allows for computation of thermodynamic properties of interest. It also provides one- and three-dimensional spatial descriptions for the ligand density across the protein-membrane system which can be of interest for structural purposes. Illustration and discussion of the results are shown for binding of the general anesthetic sevoflurane against Kv1.2, a mammalian ion channel for which experimental data are available.
膜蛋白是癌症和神经疾病中大多数治疗靶点的主要靶标,它们结合了超过 50%的已知小分子药物。了解此类配体如何影响膜蛋白需要了解配体结合的分子结构,这一推理推动了药物发现和转化研究的不懈努力。然而,小分子配体的结合似乎非常复杂,涉及与多个跨膜蛋白位点的相互作用,这些位点具有单个或多个占据状态。在这种情况下,我们着眼于该领域的新进展,研究配体与膜蛋白中多个饱和结合位点的浓度依赖性结合。这项研究依赖于对接和自由能扰动,为我们提供了对蛋白-配体状态的概率密度的广泛描述,从而可以计算出感兴趣的热力学性质。它还为蛋白质-膜系统中的配体密度提供了一维和三维的空间描述,这对于结构目的可能是有意义的。我们展示了通用麻醉剂七氟醚与 Kv1.2 结合的结果说明和讨论,Kv1.2 是一种哺乳动物离子通道,有实验数据可供参考。