Suppr超能文献

RNA polymerase of influenza virus: role of NP in RNA chain elongation.

作者信息

Honda A, Uéda K, Nagata K, Ishihama A

机构信息

Department of Molecular Genetics, National Institute of Genetics, Shizuoka.

出版信息

J Biochem. 1988 Dec;104(6):1021-6. doi: 10.1093/oxfordjournals.jbchem.a122569.

Abstract

Ribonucleoprotein (RNP) cores of influenza virus A/PR/8/34 were dissociated into RNA polymerase (PB1-PB2-PA complex)-associated genome RNA and nuclear protein (NP) fractions by CsCl centrifugation. The RNA polymerase-RNA complexes were capable of catalyzing the endonucleolytic cleavage of capped RNA, the initiation of primer-dependent RNA synthesis, and the synthesis of small-sized RNA, but were unable to synthesize template-sized RNA. By adding the NP protein to the RNA polymerase-RNA complexes, RNP (RNA polymerase-RNA-NP) complexes were reconstituted; they synthesized template-sized transcripts as did native RNP cores. These observations are consistent with the model where viral RNA polymerase is composed of the three P proteins while NP is essential for the elongation of RNA chains. RNP was completely dissociated into RNA-free proteins (PB1, PB2, PA, and NP) and a protein-free genome RNA fraction by centrifugation in cesium trifluoroacetate (CsTFA) and glycerol. By mixing the protein and RNA fractions, primer-dependent RNA-synthesizing activity was regained. These complexes, however, produced only small-sized RNA, presumably due to incorrect assembly of NP on viral RNA.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验