Suppr超能文献

基于 MRI 影像组学的骨软骨肉瘤机器学习分类。

MRI radiomics-based machine-learning classification of bone chondrosarcoma.

机构信息

Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.

Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Napoli, Italy.

出版信息

Eur J Radiol. 2020 Jul;128:109043. doi: 10.1016/j.ejrad.2020.109043. Epub 2020 May 7.

Abstract

PURPOSE

To evaluate the diagnostic performance of machine learning for discrimination between low-grade and high-grade cartilaginous bone tumors based on radiomic parameters extracted from unenhanced magnetic resonance imaging (MRI).

METHODS

We retrospectively enrolled 58 patients with histologically-proven low-grade/atypical cartilaginous tumor of the appendicular skeleton (n = 26) or higher-grade chondrosarcoma (n = 32, including 16 appendicular and 16 axial lesions). They were randomly divided into training (n = 42) and test (n = 16) groups for model tuning and testing, respectively. All tumors were manually segmented on T1-weighted and T2-weighted images by drawing bidimensional regions of interest, which were used for first order and texture feature extraction. A Random Forest wrapper was employed for feature selection. The resulting dataset was used to train a locally weighted ensemble classifier (AdaboostM1). Its performance was assessed via 10-fold cross-validation on the training data and then on the previously unseen test set. Thereafter, an experienced musculoskeletal radiologist blinded to histological and radiomic data qualitatively evaluated the cartilaginous tumors in the test group.

RESULTS

After feature selection, the dataset was reduced to 4 features extracted from T1-weighted images. AdaboostM1 correctly classified 85.7 % and 75 % of the lesions in the training and test groups, respectively. The corresponding areas under the receiver operating characteristic curve were 0.85 and 0.78. The radiologist correctly graded 81.3 % of the lesions. There was no significant difference in performance between the radiologist and machine learning classifier (P = 0.453).

CONCLUSIONS

Our machine learning approach showed good diagnostic performance for classification of low-to-high grade cartilaginous bone tumors and could prove a valuable aid in preoperative tumor characterization.

摘要

目的

评估基于平扫磁共振成像(MRI)提取的放射组学参数对四肢低级别和高级软骨性骨肿瘤进行鉴别诊断的性能。

方法

我们回顾性纳入了 58 例经组织学证实的四肢低级别/非典型软骨性肿瘤(n=26)或高级软骨肉瘤(n=32,包括 16 例四肢和 16 例中轴骨病变)患者。将患者随机分为训练组(n=42)和测试组(n=16),分别用于模型调整和测试。所有肿瘤均通过绘制二维感兴趣区手动在 T1 加权和 T2 加权图像上进行分割,用于提取一阶和纹理特征。采用随机森林包装器进行特征选择。使用所得数据集训练局部加权集成分类器(AdaboostM1)。通过在训练数据上进行 10 折交叉验证来评估其性能,然后在之前未见过的测试集中进行评估。此后,一位对组织学和放射组学数据均不知情的经验丰富的肌肉骨骼放射科医生对测试组中的软骨肿瘤进行定性评估。

结果

在特征选择后,数据集减少至 4 个从 T1 加权图像中提取的特征。AdaboostM1 在训练组和测试组中分别正确分类了 85.7%和 75%的病变,相应的受试者工作特征曲线下面积分别为 0.85 和 0.78。放射科医生正确分级了 81.3%的病变。放射科医生和机器学习分类器之间的性能无显著差异(P=0.453)。

结论

我们的机器学习方法对低级别至高级软骨性骨肿瘤的分类具有良好的诊断性能,可能成为术前肿瘤特征描述的有价值的辅助工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验