文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原发性恶性骨肿瘤成像中的人工智能:一项叙述性综述。

Artificial Intelligence in Primary Malignant Bone Tumor Imaging: A Narrative Review.

作者信息

Papageorgiou Platon S, Christodoulou Rafail, Korfiatis Panagiotis, Papagelopoulos Dimitra P, Papakonstantinou Olympia, Pham Nancy, Woodward Amanda, Papagelopoulos Panayiotis J

机构信息

First Department of Orthopaedics, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.

Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.

出版信息

Diagnostics (Basel). 2025 Jul 4;15(13):1714. doi: 10.3390/diagnostics15131714.


DOI:10.3390/diagnostics15131714
PMID:40647712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12248882/
Abstract

Artificial Intelligence (AI) has emerged as a transformative force in orthopedic oncology, offering significant advances in the diagnosis, classification, and prediction of treatment response for primary malignant bone tumors (PBT). Through machine learning and deep learning techniques, AI leverages computational algorithms and large datasets to enhance medical imaging interpretation and support clinical decision-making. The integration of radiomics with AI enables the extraction of quantitative features from medical images, allowing for precise tumor characterization and the development of personalized therapeutic strategies. Notably, convolutional neural networks have demonstrated exceptional capabilities in pattern recognition, significantly improving tumor detection, segmentation, and differentiation. This narrative review synthesizes the evolving applications of AI in PBTs, focusing on early tumor detection, imaging analysis, therapy response prediction, and histological classification. AI-driven radiomics and predictive models have yielded promising results in assessing chemotherapy efficacy, optimizing preoperative imaging, and predicting treatment outcomes, thereby advancing the field of precision medicine. Innovative segmentation techniques and multimodal imaging models have further enhanced healthcare efficiency by reducing physician workload and improving diagnostic accuracy. Despite these advancements, challenges remain. The rarity of PBTs limits the availability of robust, high-quality datasets for model development and validation, while the lack of standardized imaging protocols complicates reproducibility. Ethical considerations, including data privacy and the interpretability of complex AI algorithms, also warrant careful attention. Future research should prioritize multicenter collaborations, external validation of AI models, and the integration of explainable AI systems into clinical practice. Addressing these challenges will unlock AI's full potential to revolutionize PBT management, ultimately improving patient outcomes and advancing personalized care.

摘要

人工智能(AI)已成为骨科肿瘤学中的一股变革力量,在原发性恶性骨肿瘤(PBT)的诊断、分类及治疗反应预测方面取得了重大进展。通过机器学习和深度学习技术,人工智能利用计算算法和大型数据集来加强医学影像解读并支持临床决策。放射组学与人工智能的整合能够从医学影像中提取定量特征,实现肿瘤的精准特征描述并制定个性化治疗策略。值得注意的是,卷积神经网络在模式识别方面展现出卓越能力,显著改善了肿瘤检测、分割及鉴别。本叙述性综述综合了人工智能在原发性恶性骨肿瘤中的不断演变的应用,重点关注早期肿瘤检测、影像分析、治疗反应预测及组织学分类。人工智能驱动的放射组学和预测模型在评估化疗疗效、优化术前影像及预测治疗结果方面取得了有前景的成果,从而推动了精准医学领域的发展。创新的分割技术和多模态影像模型通过减轻医生工作量和提高诊断准确性进一步提升了医疗效率。尽管取得了这些进展,但挑战依然存在。原发性恶性骨肿瘤的罕见性限制了用于模型开发和验证的强大、高质量数据集的可用性,而缺乏标准化的影像协议使可重复性变得复杂。伦理考量,包括数据隐私和复杂人工智能算法的可解释性,也值得密切关注。未来研究应优先开展多中心合作、对人工智能模型进行外部验证,并将可解释人工智能系统整合到临床实践中。应对这些挑战将释放人工智能在彻底改变原发性恶性骨肿瘤管理方面的全部潜力,最终改善患者预后并推进个性化医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/5e05896a81d6/diagnostics-15-01714-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/da365ecb2de2/diagnostics-15-01714-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/869b3104db02/diagnostics-15-01714-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/5e05896a81d6/diagnostics-15-01714-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/da365ecb2de2/diagnostics-15-01714-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/869b3104db02/diagnostics-15-01714-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b5/12248882/5e05896a81d6/diagnostics-15-01714-g003.jpg

相似文献

[1]
Artificial Intelligence in Primary Malignant Bone Tumor Imaging: A Narrative Review.

Diagnostics (Basel). 2025-7-4

[2]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[3]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[4]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[5]
Enhancing ultrasonographic detection of hepatocellular carcinoma with artificial intelligence: current applications, challenges and future directions.

BMJ Open Gastroenterol. 2025-7-1

[6]
Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects.

Int J Med Inform. 2024-8

[7]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[8]
Artificial intelligence in the management of patient-ventilator asynchronies: A scoping review.

Heart Lung. 2025

[9]
Advancements in Herpes Zoster Diagnosis, Treatment, and Management: Systematic Review of Artificial Intelligence Applications.

J Med Internet Res. 2025-6-30

[10]
Artificial intelligence in nutrition and ageing research - A primer on the benefits.

Maturitas. 2025-7-7

本文引用的文献

[1]
Auxiliary diagnosis of primary bone tumors based on Machine learning model.

J Bone Oncol. 2024-11-9

[2]
Magnetic Resonance Imaging Texture Analysis Based on Intraosseous and Extraosseous Lesions to Predict Prognosis in Patients with Osteosarcoma.

Diagnostics (Basel). 2024-11-15

[3]
A deep learning model to enhance the classification of primary bone tumors based on incomplete multimodal images in X-ray, CT, and MRI.

Cancer Imaging. 2024-10-10

[4]
Can the preoperative CT-based deep learning radiomics model predict histologic grade and prognosis of chondrosarcoma?

Eur J Radiol. 2024-12

[5]
Radiographic imaging and diagnosis of spinal bone tumors: AlexNet and ResNet for the classification of tumor malignancy.

J Bone Oncol. 2024-8-18

[6]
High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis.

Cancer Sci. 2024-11

[7]
CT radiomics-based machine learning model for differentiating between enchondroma and low-grade chondrosarcoma.

Medicine (Baltimore). 2024-8-16

[8]
Comprehensive diagnostic model for osteosarcoma classification using CT imaging features.

J Bone Oncol. 2024-7-13

[9]
Magnetic Resonance Imaging Radiomics Predicts Histological Response to Neoadjuvant Chemotherapy in Localized High-grade Osteosarcoma of the Extremities.

Acad Radiol. 2024-12

[10]
Exploring whether ChatGPT-4 with image analysis capabilities can diagnose osteosarcoma from X-ray images.

Exp Hematol Oncol. 2024-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索