Suppr超能文献

肾功能与脑血管病之间的遗传重叠和因果推断。

Genetic overlap and causal inferences between kidney function and cerebrovascular disease.

机构信息

From the Center for Genomic Medicine (S.M., J.C., J.Q.A.H., J.R., C.D.A.), Department of Neurology (J.R., C.D.A.), and Henry and Allison McCance Center for Brain Health (J.R., C.D.A.), Massachusetts General Hospital, Boston; Institute for Stroke and Dementia Research (M.K.G., M.D., R.M.), University Hospital of Ludwig-Maximilians-University; Graduate School for Systemic Neurosciences (M.K.G.), Ludwig-Maximilians-University, Munich, Germany; Department of Medicine (Biomedical Genetics) (J.C.), Boston University School of Medicine, MA; Munich Cluster for Systems Neurology (SyNergy) (M.D.); German Centre for Neurodegenerative Diseases (DZNE) (M.D.), Munich, Germany; and Program in Medical and Population Genetics (J.R., C.D.A.), Broad Institute of Harvard and MIT, Cambridge, MA.

出版信息

Neurology. 2020 Jun 16;94(24):e2581-e2591. doi: 10.1212/WNL.0000000000009642. Epub 2020 May 21.

Abstract

OBJECTIVE

Leveraging large-scale genetic data, we aimed to identify shared pathogenic mechanisms and causal relationships between impaired kidney function and cerebrovascular disease phenotypes.

METHODS

We used summary statistics from genome-wide association studies (GWAS) of kidney function traits (chronic kidney disease diagnosis, estimated glomerular filtration rate [eGFR], and urinary albumin-to-creatinine ratio [UACR]) and cerebrovascular disease phenotypes (ischemic stroke and its subtypes, intracerebral hemorrhage [ICH], and white matter hyperintensities [WMH] on brain MRI). We (1) tested the genetic overlap between them with polygenic risk scores (PRS), (2) searched for common pleiotropic loci with pairwise GWAS analyses, and (3) explored causal associations by employing 2-sample Mendelian randomization.

RESULTS

A PRS for lower eGFR was associated with higher large artery stroke (LAS) risk ( = 1 × 10). Multiple pleiotropic loci were identified between kidney function traits and cerebrovascular disease phenotypes, with 12q24 associated with eGFR and both LAS and small vessel stroke (SVS), and 2q33 associated with UACR and both SVS and WMH. Mendelian randomization revealed associations of both lower eGFR (odds ratio [OR] per 1-log decrement, 2.10; 95% confidence interval [CI], 1.38-3.21) and higher UACR (OR per 1-log increment, 2.35; 95% CI, 1.12-4.94) with a higher risk of LAS, as well as between higher UACR and higher risk of ICH.

CONCLUSIONS

Impaired kidney function, as assessed by decreased eGFR and increased UACR, may be causally involved in the pathogenesis of LAS. Increased UACR, previously proposed as a marker of systemic small vessel disease, is involved in ICH risk and shares a genetic risk factor at 2q33 with manifestations of cerebral small vessel disease.

摘要

目的

利用大规模遗传数据,我们旨在确定肾功能障碍与脑血管疾病表型之间的共同致病机制和因果关系。

方法

我们使用了肾功能指标(慢性肾脏病诊断、肾小球滤过率估计[eGFR]和尿白蛋白与肌酐比值[UACR])和脑血管疾病表型(缺血性卒中及其亚型、脑出血[ICH]和脑 MRI 上的脑白质高信号[WMH])的全基因组关联研究(GWAS)的汇总统计数据。我们(1)使用多基因风险评分(PRS)测试它们之间的遗传重叠,(2)通过两两 GWAS 分析搜索常见的多效性位点,(3)通过两样本孟德尔随机化探索因果关系。

结果

较低的 eGFR 的 PRS 与较高的大动脉卒中(LAS)风险相关( = 1 × 10)。在肾功能指标和脑血管疾病表型之间发现了多个多效性位点,12q24 与 eGFR 和 LAS 及小血管卒中(SVS)相关,2q33 与 UACR 和 SVS 及 WMH 相关。孟德尔随机化显示,较低的 eGFR(每降低 1-log 的比值比[OR],2.10;95%置信区间[CI],1.38-3.21)和较高的 UACR(每增加 1-log 的比值比[OR],2.35;95% CI,1.12-4.94)均与 LAS 风险增加相关,以及较高的 UACR 与较高的 ICH 风险相关。

结论

通过降低 eGFR 和增加 UACR 评估的肾功能障碍可能与 LAS 的发病机制有关。UACR 升高,以前被提出作为全身小血管疾病的标志物,与 ICH 风险有关,并与 2q33 处的脑小血管疾病表现共享遗传风险因素。

相似文献

1
Genetic overlap and causal inferences between kidney function and cerebrovascular disease.
Neurology. 2020 Jun 16;94(24):e2581-e2591. doi: 10.1212/WNL.0000000000009642. Epub 2020 May 21.
2
Interplay Between Chronic Kidney Disease, Hypertension, and Stroke: Insights From a Multivariable Mendelian Randomization Analysis.
Neurology. 2023 Nov 14;101(20):e1960-e1969. doi: 10.1212/WNL.0000000000207852. Epub 2023 Sep 29.
5
Lipids, Apolipoproteins, Lipid-Lowering Drugs, and the Risk of Cerebral Small Vessel Disease: A Mendelian Randomization Study.
J Am Heart Assoc. 2024 Aug 20;13(16):e032409. doi: 10.1161/JAHA.123.032409. Epub 2024 Aug 19.
6
Microalbuminuria and the Combination of MRI Markers of Cerebral Small Vessel Disease.
Cerebrovasc Dis. 2016;42(1-2):66-72. doi: 10.1159/000445168. Epub 2016 Apr 1.
9
Causal Relationship Between Kidney Function and Cancer Risk: A Mendelian Randomization Study.
Am J Kidney Dis. 2024 Dec;84(6):686-695.e1. doi: 10.1053/j.ajkd.2024.05.016. Epub 2024 Jul 30.
10
Association of Kidney Function Biomarkers with Brain MRI Findings: The BRINK Study.
J Alzheimers Dis. 2017;55(3):1069-1082. doi: 10.3233/JAD-160834.

引用本文的文献

1
Mendelian randomization studies on ischemic stroke: a field synopsis and systematic review.
J Transl Med. 2025 Aug 22;23(1):955. doi: 10.1186/s12967-025-06992-4.
2
Chronic kidney disease and dementia: an epidemiological perspective.
Nat Rev Nephrol. 2025 May 22. doi: 10.1038/s41581-025-00967-w.
3
Associations of Cerebral Small Vessel Disease and Chronic Kidney Disease in Patients With Acute Ischemic Stroke.
J Am Heart Assoc. 2025 May 6;14(9):e038711. doi: 10.1161/JAHA.124.038711. Epub 2025 Apr 23.
4
Genetic and circulating biomarkers of cognitive dysfunction and dementia in CKD.
Nephrol Dial Transplant. 2025 Mar 13;40(Supplement_2):ii64-ii75. doi: 10.1093/ndt/gfae259.
5
Mendelian randomization studies of lifestyle-related risk factors for stroke: a systematic review and meta-analysis.
Front Endocrinol (Lausanne). 2024 Nov 4;15:1379516. doi: 10.3389/fendo.2024.1379516. eCollection 2024.
6
Mendelian Randomization Studies: Opening a New Window in the Study of Metabolic Diseases and Chronic Kidney Disease.
Endocr Metab Immune Disord Drug Targets. 2025;25(6):442-457. doi: 10.2174/0118715303288685240808073238.
8
Genetic biomarkers of cognitive impairment and dementia of potential interest in CKD patients.
J Nephrol. 2024 Dec;37(9):2473-2479. doi: 10.1007/s40620-024-02006-6. Epub 2024 Jul 6.
9
Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham Heart Study.
Nephrol Dial Transplant. 2024 Oct 30;39(11):1911-1922. doi: 10.1093/ndt/gfae079.
10

本文引用的文献

1
Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.
Nat Genet. 2019 Jan;51(1):51-62. doi: 10.1038/s41588-018-0303-9. Epub 2018 Dec 21.
2
Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016.
N Engl J Med. 2018 Dec 20;379(25):2429-2437. doi: 10.1056/NEJMoa1804492.
3
SumHer better estimates the SNP heritability of complex traits from summary statistics.
Nat Genet. 2019 Feb;51(2):277-284. doi: 10.1038/s41588-018-0279-5. Epub 2018 Dec 3.
4
Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways.
Nat Commun. 2018 Nov 14;9(1):4774. doi: 10.1038/s41467-018-06649-5.
5
Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
Nat Genet. 2018 Oct;50(10):1412-1425. doi: 10.1038/s41588-018-0205-x. Epub 2018 Sep 17.
6
Genetic Association of Albuminuria with Cardiometabolic Disease and Blood Pressure.
Am J Hum Genet. 2018 Oct 4;103(4):461-473. doi: 10.1016/j.ajhg.2018.08.004. Epub 2018 Sep 13.
8
Common Methods for Performing Mendelian Randomization.
Front Cardiovasc Med. 2018 May 28;5:51. doi: 10.3389/fcvm.2018.00051. eCollection 2018.
9
Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood.
Am J Hum Genet. 2018 Jun 7;102(6):1185-1194. doi: 10.1016/j.ajhg.2018.03.021. Epub 2018 May 10.
10
Genetic Study of White Matter Integrity in UK Biobank (N=8448) and the Overlap With Stroke, Depression, and Dementia.
Stroke. 2018 Jun;49(6):1340-1347. doi: 10.1161/STROKEAHA.118.020811. Epub 2018 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验