Suppr超能文献

一种简单的算法有助于早期识别重症进展倾向的 SARS-CoV-2 感染患者。

A simple algorithm helps early identification of SARS-CoV-2 infection patients with severe progression tendency.

机构信息

Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, 2901 Cao Lang Road, Shanghai, 201508, China.

Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.

出版信息

Infection. 2020 Aug;48(4):577-584. doi: 10.1007/s15010-020-01446-z. Epub 2020 May 21.

Abstract

OBJECTIVES

We aimed to develop a simple algorithm to help early identification of SARS-CoV-2 infection patients with severe progression tendency.

METHODS

The univariable and multivariable analysis were computed to identify the independent predictors of COVID-19 progression. The prediction model was established in a retrospective training set of 322 COVID-19 patients and was re-evaluated in a prospective validation set of 317 COVID-19 patients.

RESULTS

The multivariable analysis identified age (OR = 1.061, p = 0.028), lactate dehydrogenase (LDH) (OR = 1.006, p = 0.037), and CD4 count (OR = 0.993, p = 0.006) as the independent predictors of COVID-19 progression. Consequently, the age-LDH-CD4 algorithm was derived as (age × LDH)/CD4 count. In the training set, the area under the ROC curve (AUROC) of age-LDH-CD4 model was significantly higher than that of single CD4 count, LDH, or age (0.92, 0.85, 0.80, and 0.75, respectively). In the prospective validation set, the AUROC of age-LDH-CD4 model was also significantly higher than that of single CD4 count, LDH, or age (0.92, 0.75, 0.81, and 0.82, respectively). The age-LDH-CD4 ≥ 82 has high sensitive (81%) and specific (93%) for the early identification of COVID-19 patients with severe progression tendency.

CONCLUSIONS

The age-LDH-CD4 model is a simple algorithm for early identifying patients with severe progression tendency following SARS-CoV-2 infection, and warrants further validation.

摘要

目的

我们旨在开发一种简单的算法,以帮助早期识别 SARS-CoV-2 感染患者中具有严重进展倾向的患者。

方法

使用单变量和多变量分析来确定 COVID-19 进展的独立预测因素。在回顾性训练集中对预测模型进行了 322 例 COVID-19 患者的评估,并在前瞻性验证集中对 317 例 COVID-19 患者进行了重新评估。

结果

多变量分析确定年龄(OR=1.061,p=0.028)、乳酸脱氢酶(LDH)(OR=1.006,p=0.037)和 CD4 计数(OR=0.993,p=0.006)为 COVID-19 进展的独立预测因素。因此,得出了年龄-LDH-CD4 算法,即(年龄×LDH)/CD4 计数。在训练集中,年龄-LDH-CD4 模型的 ROC 曲线下面积(AUROC)明显高于单个 CD4 计数、LDH 或年龄(分别为 0.92、0.85、0.80 和 0.75)。在前瞻性验证集中,年龄-LDH-CD4 模型的 AUROC 也明显高于单个 CD4 计数、LDH 或年龄(分别为 0.92、0.75、0.81 和 0.82)。年龄-LDH-CD4≥82 对识别 COVID-19 患者中具有严重进展倾向的患者具有较高的敏感性(81%)和特异性(93%)。

结论

年龄-LDH-CD4 模型是一种简单的算法,可用于早期识别 SARS-CoV-2 感染后具有严重进展倾向的患者,值得进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db0/7240242/41b8f4ca8d97/15010_2020_1446_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验