Suppr超能文献

颞动脉彩色多普勒超声在巨细胞动脉炎诊断中的应用:一项多中心深度学习研究。

Colour Doppler ultrasound of temporal arteries for the diagnosis of giant cell arteritis: a multicentre deep learning study.

机构信息

Vascular Medicine Department, Groupe Hospitalier de la Rochelle Ré Aunis, La Rochelle, France.

Artificial Intelligence Lab, Météo-France, Toulouse, France.

出版信息

Clin Exp Rheumatol. 2020 Mar-Apr;38 Suppl 124(2):120-125. Epub 2020 May 21.

Abstract

OBJECTIVES

Giant cell arteritis (GCA) is the most common systemic vasculitis in adults. In recent years, colour Doppler ultrasound of the temporal arteries (CDU) has proven to be a powerful non-invasive diagnostic tool, but its place in the diagnosis of GCA remains to be defined. A limitation of the CDU is the inter-operator reproducibility. Image analysis from a different perspective is now possible with the development of artificial intelligence algorithms. We propose to assess this technology for the detection of the halo sign on CDU images.

METHODS

Three public hospitals retrospectively collected data from 137 patients suspected of having GCA between January 2017 and April 2019. CDU images (n=1,311) were labelled with the VIA software. Three sets (training, validation and test) were created and analysed with a semantic segmentation technique using a U-Net convolutional neural network.

RESULTS

The area under the curve (AUC) was 0.931 and 0.835 on the validation and test set, respectively. An image positivity threshold was determined by focusing on the specificity. With this threshold, a specificity of 95% and a sensitivity of 60% were obtained for the test set. The analysis of the false interpretation showed that the acquisition modalities and the presence of thrombus caused confusion for the algorithm.

CONCLUSIONS

We propose an automated image analysis tool for GCA diagnosis. The 2018 EULAR guidelines for image acquisition must be respected before generalising this algorithm. After external validation, this tool could be used as an aid for diagnosis, staff training and student education.

摘要

目的

巨细胞动脉炎(GCA)是成年人中最常见的系统性血管炎。近年来,颞动脉彩色多普勒超声(CDU)已被证明是一种强大的非侵入性诊断工具,但在 GCA 的诊断中的地位仍有待确定。CDU 的一个局限性是操作者之间的可重复性。随着人工智能算法的发展,现在可以从不同的角度对图像进行分析。我们建议评估这项技术在 CDU 图像上检测 halo 征的能力。

方法

三家公立医院回顾性地收集了 2017 年 1 月至 2019 年 4 月期间怀疑患有 GCA 的 137 名患者的数据。对 CDU 图像(n=1,311)使用 VIA 软件进行了标记。创建了三个集(训练集、验证集和测试集),并使用基于 U-Net 卷积神经网络的语义分割技术进行了分析。

结果

验证集和测试集的曲线下面积(AUC)分别为 0.931 和 0.835。通过关注特异性确定了图像阳性阈值。使用该阈值,测试集的特异性为 95%,敏感性为 60%。对错误解释的分析表明,采集方式和血栓的存在给算法造成了混淆。

结论

我们提出了一种用于 GCA 诊断的自动图像分析工具。在推广该算法之前,必须遵守 2018 年 EULAR 图像采集指南。经过外部验证后,该工具可用于辅助诊断、人员培训和学生教育。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验