Sequí-Sabater José Miguel, Benavent Diego
Rheumatology Department, La Ribera University Hospital, Alzira, Spain.
Rheumatology Deparment, La Fe University and Polytechnic Hospital, Valencia, Spain.
RMD Open. 2025 Jan 8;11(1):e004309. doi: 10.1136/rmdopen-2024-004309.
Artificial intelligence (AI) is transforming rheumatology research, with a myriad of studies aiming to improve diagnosis, prognosis and treatment prediction, while also showing potential capability to optimise the research workflow, improve drug discovery and clinical trials. Machine learning, a key element of discriminative AI, has demonstrated the ability of accurately classifying rheumatic diseases and predicting therapeutic outcomes by using diverse data types, including structured databases, imaging and text. In parallel, generative AI, driven by large language models, is becoming a powerful tool for optimising the research workflow by supporting with content generation, literature review automation and clinical decision support. This review explores the current applications and future potential of both discriminative and generative AI in rheumatology. It also highlights the challenges posed by these technologies, such as ethical concerns and the need for rigorous validation and regulatory oversight. The integration of AI in rheumatology promises substantial advancements but requires a balanced approach to optimise benefits and minimise potential possible downsides.
人工智能(AI)正在改变风湿病学研究,众多研究旨在改善诊断、预后和治疗预测,同时还展现出优化研究工作流程、改进药物发现和临床试验的潜在能力。机器学习作为判别式AI的关键要素,已证明能够通过使用包括结构化数据库、成像和文本在内的多种数据类型,准确地对风湿性疾病进行分类并预测治疗结果。与此同时,由大语言模型驱动的生成式AI正成为一种强大工具,通过支持内容生成、文献综述自动化和临床决策支持来优化研究工作流程。本综述探讨了判别式和生成式AI在风湿病学中的当前应用和未来潜力。它还强调了这些技术带来的挑战,如伦理问题以及严格验证和监管监督的必要性。AI在风湿病学中的整合有望带来重大进展,但需要一种平衡的方法来优化益处并将潜在的不利影响降至最低。