Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
J Phys Chem A. 2020 Jun 25;124(25):5063-5070. doi: 10.1021/acs.jpca.9b12017. Epub 2020 Jun 10.
Charge dynamics play an important role in numerous natural phenomena and artificial devices, and tracking charge migration and recombination is crucial for understanding the mechanism and function of systems involving charge transfer. Tip-synchronized pump-probe electrostatic force microscopy simultaneously permits highly sensitive detection, microsecond time resolution, and nanoscale spatial resolution, where the spatial distribution in static measurement (usual EFM) reflects differences in the carrier density and the time evolution reveals the surface carrier mobility. By using this method, carrier injection and ejection in sulfonated polyaniline (SPAN) thin films were visualized. Comparison of tr-EFM results of SPAN thin films with different doping levels revealed the individual differences in carrier density and mobility.
电荷动力学在许多自然现象和人工设备中起着重要作用,跟踪电荷迁移和复合对于理解涉及电荷转移的系统的机制和功能至关重要。尖端同步泵浦-探测静电力显微镜同时允许高灵敏度检测、微秒时间分辨率和纳米空间分辨率,其中静态测量中的空间分布(通常是 EFM)反映了载流子密度的差异,而时间演化揭示了表面载流子迁移率。通过使用这种方法,可以可视化磺化聚苯胺(SPAN)薄膜中的载流子注入和引出。比较不同掺杂水平的 SPAN 薄膜的 tr-EFM 结果揭示了载流子密度和迁移率的个体差异。