Suppr超能文献

高山冻原碳通量的驱动因素:三种经验模型方法的比较。

Drivers of carbon fluxes in Alpine tundra: a comparison of three empirical model approaches.

机构信息

Institute of Geosciences and Earth Resources, Via Valperga Caluso 35, 10125 Torino, Italy; University of Turin & INFN, Via Pietro Giuria 1, 10125 Torino, Italy.

Institute of Geosciences and Earth Resources, Via Moruzzi 1, 56124 Pisa, Italy.

出版信息

Sci Total Environ. 2020 Aug 25;732:139139. doi: 10.1016/j.scitotenv.2020.139139. Epub 2020 May 5.

Abstract

In high mountains, the effects of climate change are manifesting most rapidly. This is especially critical for the high-altitude carbon cycle, for which new feedbacks could be triggered. However, mountain carbon dynamics is only partially known. In particular, models of the processes driving carbon fluxes in high-altitude grasslands and Alpine tundra need to be improved. Here, we propose a comparison of three empirical approaches using systematic statistical analysis, to identify the environmental variables controlling CO fluxes. The methods were applied to a complete dataset of simultaneous in situ measurements of the net CO exchange, ecosystem respiration and basic environmental variables in three sampling sites in the same catchment. Large year-to-year variations in the Gross Primary Production (GPP) and Ecosystem Respiration (ER) dependences on solar irradiance and temperature were observed. We thus implemented a multi regression model in which additional variables were introduced as perturbations of the standard exponential and rectangular hyperbolic functions for ER and GPP, respectively. A comparison of this model with other common modelling strategies showed the benefits of this approach, resulting in large explained variances (83% to 94%). The optimum ensemble of variables explaining the inter- and intra-annual flux variability included solar irradiance, soil moisture and day of the year for GPP, and air temperature, soil moisture, air pressure and day of the year for ER, in agreement with other studies. The modelling approach discussed here provides a basis for selecting drivers of carbon fluxes and understanding their role in high-altitude Alpine ecosystems, also allowing for future short-range assessments of local trends.

摘要

在高山地区,气候变化的影响表现得最为迅速。这对于高海拔碳循环尤其关键,因为新的反馈机制可能会被触发。然而,高山碳动态的知识还不完全清楚。特别是,需要改进驱动高海拔草原和高山冻原碳通量的模型。在这里,我们提出了使用系统统计分析比较三种经验方法的建议,以确定控制 CO 通量的环境变量。这些方法应用于同一集水区三个采样点的同时进行的净 CO 交换、生态系统呼吸和基本环境变量的完整数据集的比较分析。我们观察到总初级生产力 (GPP) 和生态系统呼吸 (ER) 对太阳辐射和温度的依赖性存在很大的年际变化。因此,我们实施了一个多元回归模型,其中将其他变量引入到 ER 和 GPP 的标准指数和矩形双曲函数中作为扰动。与其他常见建模策略的比较表明了这种方法的优势,导致了较大的解释方差(83% 到 94%)。解释年际和年内通量变化的最佳变量组合包括 GPP 的太阳辐射、土壤湿度和一年中的天数,以及 ER 的空气温度、土壤湿度、气压和一年中的天数,这与其他研究结果一致。这里讨论的建模方法为选择碳通量的驱动因素提供了基础,并有助于理解它们在高海拔高山生态系统中的作用,同时还可以对当地趋势进行未来短期评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验