Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland.
Woodwell Climate Research Center, Falmouth, MA, USA.
Glob Chang Biol. 2021 Sep;27(17):4040-4059. doi: 10.1111/gcb.15659. Epub 2021 Jun 10.
The regional variability in tundra and boreal carbon dioxide (CO ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO fluxes and test the accuracy and uncertainty of different statistical models. CO fluxes were upscaled at relatively high spatial resolution (1 km ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m yr , respectively) compared to tundra (average annual NEE +10 and -2 g C m yr ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO sink during 1990-2015, although uncertainty remains high.
多年冻土和北方森林地区二氧化碳(CO )通量的区域变异性可能很大,这使得在整个区域量化源汇格局的工作变得复杂。统计模型越来越多地用于预测(即扩大规模)大空间域的 CO 通量,但不同建模技术的可靠性,每种技术都有不同的规格和假设,尚未进行详细评估。在这里,我们汇编了 1990-2015 年期间来自 148 个陆地高纬度(即多年冻土和北方森林)站点的涡度相关和腔室测量的年度和生长季节 CO 通量的总初级生产力(GPP)、生态系统呼吸(ER)和净生态系统交换(NEE),以分析 CO 通量的空间格局和驱动因素,并测试不同统计模型的准确性和不确定性。使用五种常用的统计模型及其集合(即所有五个模型的中位数),使用气候、植被和土壤预测因子,在高纬度地区以相对较高的空间分辨率(1km)对 CO 通量进行了扩大规模。我们发现机器学习和集合预测的性能优于传统回归方法。我们还发现,与预测 GPP 和 ER 的模型相比,专注于 NEE 的模型的预测性能较低。我们的数据汇编和集合预测表明,与北方森林生物群落相比(观察到和预测的年均 NEE 分别为-46 和-29g C m yr),北方森林生物群落的 CO 汇强度更大(观察到和预测的年均 NEE 分别为-46 和-29g C m yr)。这种模式与大的空间变异性有关,反映了土壤有机碳储量、气候和植被生产力的局部异质性。使用年度 NEE 集合预测估算的陆地生态系统 CO 预算表明,在 1990-2015 年期间,高纬度地区平均每年都是 CO 汇,尽管不确定性仍然很高。