Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Mechanical Engineering, Imperial College London, London, UK.
Ultrason Sonochem. 2020 Oct;67:105170. doi: 10.1016/j.ultsonch.2020.105170. Epub 2020 May 13.
Predicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes. Parametric instability is predicted by examining the natural frequency and the Mathieu equation for the non-spherical modes, which are obtained from our model. Our theoretical results show good agreement with published experiments of the shape oscillations of a bubble in a gelatin gel. We further examine the impact of viscoelasticity on the time evolution of non-spherical mode amplitudes. In particular, we find that viscosity increases the damping rate, thus suppressing the shape instability, while shear modulus increases the natural frequency, which changes the unstable mode. We also explain the contributions of rotational and irrotational fields to the viscoelastic stresses in the surroundings and at the bubble surface, as these contributions affect the damping rate and the unstable mode. Our analysis on the role of viscoelasticity is potentially useful to measure viscoelastic properties of soft materials by experimentally observing the shape oscillations of a bubble.
预测软物质中气泡非球形振动的起始是一个基本的空化问题,对声处理、聚合材料合成和生物医学超声应用都有影响。本文在最简单的软固体本构模型——非线性弹性的 Kelvin-Voigt 粘弹性介质中,对气泡的形状稳定性进行了分析,并与实验进行了比较。通过微扰方法,我们将运动方程简化为两组演化方程:一个用于平均(体积等效)气泡半径的 Rayleigh-Plesset 型方程,以及一个用于非球形模式幅度的方程。通过检查自然频率和非球形模式的 Mathieu 方程来预测参数不稳定性,这些方程是从我们的模型中得到的。我们的理论结果与发表的明胶凝胶中气泡形状振荡的实验结果吻合良好。我们进一步研究了粘弹性对非球形模式幅度时间演化的影响。特别是,我们发现粘度增加了阻尼率,从而抑制了形状不稳定性,而剪切模量增加了自然频率,从而改变了不稳定模式。我们还解释了旋转和无旋转场对周围环境和气泡表面的粘弹性应力的贡献,因为这些贡献会影响阻尼率和不稳定模式。我们对粘弹性作用的分析对于通过实验观察气泡的形状振荡来测量软物质的粘弹性性质可能是有用的。