Suppr超能文献

突变在大肠杆菌磷霉素异质性耐药中的作用。

Contribution of hypermutation to fosfomycin heteroresistance in Escherichia coli.

机构信息

Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.

Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain.

出版信息

J Antimicrob Chemother. 2020 Aug 1;75(8):2066-2075. doi: 10.1093/jac/dkaa131.

Abstract

OBJECTIVES

To explore the effect of combining defects in DNA repair systems with the presence of fosfomycin-resistant mechanisms to explain the mechanisms underlying fosfomycin heteroresistance phenotypes in Enterobacteriaceae.

MATERIALS AND METHODS

We used 11 clinical Escherichia coli isolates together with isogenic single-gene deletion mutants in the E. coli DNA repair system or associated with fosfomycin resistance, combined with double-gene deletion mutants. Fosfomycin MICs were determined by gradient strip assay (GSA) and broth microdilution (BMD). Mutant frequencies for rifampicin (100 mg/L) and fosfomycin (50 and 200 mg/L) were determined. Using two starting inocula, in vitro fosfomycin activity was assessed over 24 h in growth (0.5-512 mg/L) and time-kill assays (64 and 307 mg/L).

RESULTS

Strong and weak mutator clinical isolates and single-gene deletion mutants, except for ΔuhpT and ΔdnaQ, were susceptible by GSA. By BMD, the percentage of resistant clinical isolates reached 36%. Single-gene deletion mutants showed BMD MICs similar to those for subpopulations by GSA. Strong mutators showed a higher probability of selecting fosfomycin mutants at higher concentrations. By combining the two mechanisms of mutation, MICs and ranges of resistant subpopulations increased, enabling strains to survive at higher fosfomycin concentrations in growth monitoring assays. In time-kill assays, high inocula increased survival by 37.5% at 64 mg/L fosfomycin, compared with low starting inocula.

CONCLUSIONS

The origin and variability of the fosfomycin heteroresistance phenotype can be partially explained by high mutation frequencies together with mechanisms of fosfomycin resistance. Subpopulations should be considered until clinical meaning is established.

摘要

目的

探讨 DNA 修复系统缺陷与磷霉素耐药机制共存对肠杆菌科磷霉素异质耐药表型机制的解释。

材料和方法

我们使用了 11 株临床分离的大肠杆菌与大肠杆菌 DNA 修复系统的同源单基因缺失突变体或与磷霉素耐药相关的突变体,以及双基因缺失突变体进行了联合研究。通过梯度条带试验(GSA)和肉汤微量稀释法(BMD)测定磷霉素 MIC。测定了利福平(100mg/L)和磷霉素(50 和 200mg/L)的突变频率。使用两个起始接种物,在生长(0.5-512mg/L)和时间杀伤试验(64 和 307mg/L)中评估了 24 小时内体外磷霉素的活性。

结果

强和弱突变体临床分离株和单基因缺失突变体,除了ΔuhpT 和ΔdnaQ 外,通过 GSA 均为敏感。通过 BMD,耐药临床分离株的比例达到 36%。单基因缺失突变体显示与 GSA 亚群相似的 BMD MIC。强突变体在较高浓度下选择磷霉素突变体的可能性更高。通过结合两种突变机制,MIC 和耐药亚群的范围增加,使菌株能够在生长监测试验中在更高的磷霉素浓度下存活。在时间杀伤试验中,与低起始接种物相比,高接种物在 64mg/L 磷霉素时增加了 37.5%的存活。

结论

高突变频率结合磷霉素耐药机制,部分解释了磷霉素异质耐药表型的起源和可变性。在建立临床意义之前,应考虑亚群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验