Maeda Akihiro, Nakauchi Aki, Shimizu Yusuke, Terai Kengo, Sugii Shuhei, Hayashi Hironobu, Aratani Naoki, Suzuki Mitsuharu, Yamada Hiroko
Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
Materials (Basel). 2020 May 18;13(10):2316. doi: 10.3390/ma13102316.
Preparation of high-performance organic semiconductor devices requires precise control over the active-layer structure. To this end, we are working on the controlled deposition of small-molecule semiconductors through a photoprecursor approach wherein a soluble precursor compound is processed into a thin-film form and then converted to a target semiconductor by light irradiation. This approach can be applied to layer-by-layer solution deposition, enabling the preparation of p-i-n-type photovoltaic active layers by wet processing. However, molecular design principles are yet to be established toward obtaining desirable thin-film morphology via this unconventional method. Herein, we evaluate a new windmill-shaped molecule with anthryl blades, 1,3,5-tris(5-(anthracen-2-yl)thiophen-2-yl)benzene, which is designed to deposit via the photoprecursor approach for use as the p-sublayer in p-i-n-type organic photovoltaic devices (OPVs). The new compound is superior to the corresponding precedent p-sublayer materials in terms of forming smooth and homogeneous films, thereby leading to improved performance of p-i-n OPVs. Overall, this work demonstrates the effectiveness of the windmill-type architecture in preparing high-quality semiconducting thin films through the photoprecursor approach.
高性能有机半导体器件的制备需要对活性层结构进行精确控制。为此,我们正在通过光前驱体方法研究小分子半导体的可控沉积,其中可溶性前驱体化合物被加工成薄膜形式,然后通过光照射转化为目标半导体。这种方法可应用于逐层溶液沉积,能够通过湿法工艺制备p-i-n型光伏活性层。然而,通过这种非常规方法获得理想薄膜形态的分子设计原则尚未确立。在此,我们评估了一种带有蒽基叶片的新型风车状分子1,3,5-三(5-(蒽-2-基)噻吩-2-基)苯,该分子设计用于通过光前驱体方法沉积,用作p-i-n型有机光伏器件(OPV)中的p子层。这种新化合物在形成光滑均匀的薄膜方面优于相应的先例p子层材料,从而提高了p-i-n型OPV的性能。总体而言,这项工作证明了风车型结构通过光前驱体方法制备高质量半导体薄膜的有效性。