Topal Emre, Rajendran Harishankaran, Zgłobicka Izabela, Gluch Jürgen, Liao Zhongquan, Clausner André, Kurzydłowski Krzysztof Jan, Zschech Ehrenfried
Dresden Center for Nanoanalysis, Technische Universität Dresden, 01069 Dresden, Germany.
Fraunhofer IKTS, Institute for Ceramic Technologies and Systems, 01109 Dresden, Germany.
Nanomaterials (Basel). 2020 May 18;10(5):959. doi: 10.3390/nano10050959.
Diatom frustules, with their hierarchical three-dimensional patterned silica structures at nano to micrometer dimensions, can be a paragon for the design of lightweight structural materials. However, the mechanical properties of frustules, especially the species with pennate symmetry, have not been studied systematically. A novel approach combining in situ micro-indentation and high-resolution X-ray computed tomography (XCT)-based finite element analysis (FEA) at the identical sample is developed and applied to frustule. Furthermore, scanning electron microscopy and transmission electron microscopy investigations are conducted to obtain detailed information regarding the resolvable structures and the composition. During the in situ micro-indentation studies of frustule, a mainly elastic deformation behavior with displacement discontinuities/non-linearities is observed. To extract material properties from obtained load-displacement curves in the elastic region, elastic finite element method (FEM) simulations are conducted. Young's modulus is determined as 31.8 GPa. The method described in this paper allows understanding of the mechanical behavior of very complex structures.
硅藻壳具有纳米到微米尺寸的分级三维图案化二氧化硅结构,可为轻质结构材料的设计提供范例。然而,硅藻壳的力学性能,尤其是具有羽状对称的种类,尚未得到系统研究。本文开发了一种将原位微压痕与基于高分辨率X射线计算机断层扫描(XCT)的有限元分析(FEA)相结合的新方法,并将其应用于硅藻壳。此外,还进行了扫描电子显微镜和透射电子显微镜研究,以获取有关可分辨结构和组成的详细信息。在硅藻壳的原位微压痕研究中,观察到主要为具有位移不连续性/非线性的弹性变形行为。为了从弹性区域获得的载荷-位移曲线中提取材料特性,进行了弹性有限元方法(FEM)模拟。确定杨氏模量为31.8 GPa。本文所述方法有助于理解非常复杂结构的力学行为。