Soleimani Mohammad, van den Broek Sten J J, Joosten Rick R M, van Hazendonk Laura S, Maddala Sai P, van Breemen Lambert C A, van Benthem Rolf A T M, Friedrich Heiner
Laboratory of Physical Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands.
Department of Mechanical Engineering, Polymer Technology, Materials Technology Institute, Eindhoven University of Technology, Groene Loper 15, 5612 AE Eindhoven, The Netherlands.
Nanomaterials (Basel). 2022 May 3;12(9):1549. doi: 10.3390/nano12091549.
Investigating and understanding the intrinsic material properties of biogenic materials, which have evolved over millions of years into admirable structures with difficult to mimic hierarchical levels, holds the potential of replacing trial-and-error-based materials optimization in our efforts to make synthetic materials of similarly advanced complexity and properties. An excellent example is biogenic silica which is found in the exoskeleton of unicellular photosynthetic algae termed diatoms. Because of the complex micro- and nanostructures found in their exoskeleton, determining the intrinsic mechanical properties of biosilica in diatoms has only partly been accomplished. Here, a general method is presented in which a combination of in situ deformation tests inside an SEM with a realistic 3D model of the frustule of diatom sp. ( sp.) obtained by electron tomography, alongside finite element method (FEM) simulations, enables quantification of the Young's modulus (E = 2.3 ± 0.1 GPa) of this biogenic hierarchical silica. The workflow presented can be readily extended to other diatom species, biominerals, or even synthetic hierarchical materials.
研究和理解生物源材料的内在材料特性,这些材料历经数百万年进化成具有难以模仿的层次结构的令人赞叹的结构,这有可能在我们制造具有类似先进复杂性和特性的合成材料的过程中,取代基于反复试验的材料优化方法。一个很好的例子是生物源二氧化硅,它存在于单细胞光合藻类硅藻的外骨骼中。由于在它们的外骨骼中发现了复杂的微观和纳米结构,确定硅藻中生物二氧化硅的内在力学性能仅部分完成。在此,提出了一种通用方法,其中在扫描电子显微镜(SEM)内进行原位变形测试,并结合通过电子断层扫描获得的硅藻属(sp.)截头壳体的真实三维模型,同时进行有限元方法(FEM)模拟,从而能够量化这种生物源层次结构二氧化硅的杨氏模量(E = 2.3 ± 0.1 GPa)。所展示的工作流程可以很容易地扩展到其他硅藻物种、生物矿物,甚至合成层次结构材料。