Reurink Dennis M, Du Fei, Górecki Radosław, Roesink Hendrik D W, de Vos Wiebe M
Membrane Science & Technology, University of Twente, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark.
Membranes (Basel). 2020 May 18;10(5):103. doi: 10.3390/membranes10050103.
The field of membranes saw huge developments in the last decades with the introduction of both polyelectrolyte multilayer (PEM)-based membranes and biomimetic membranes. In this work, we combine these two promising systems and demonstrate that proteopolymersomes (PP+) with the incorporated aquaporin protein can be distributed in a controlled fashion using PEMs, even on the inner surface of a hollow fiber membrane. In this way, various proteopolymersome multilayers (PPMs) are fabricated using PP+ as the positively charged species in combination with the polyanions poly(styrene 4-sulfonate) (PSS) and poly(acrylic acid) (PAA). It is shown by reflectometry through alternately adsorbing the polyanions and PP+ that, for both PAA and PSS, a good layer growth is possible. However, when the multilayers are imaged by SEM, the PAA-based PPMs show dewetting, whereas vesicular structures can only be clearly observed in and on the PSS-based PPMs. In addition, membrane permeability decreases upon coating the PPMs to 2.6 L∙m∙h∙bar for PAA/PP+ and 7.7 L∙m∙h∙bar for PSS/PP+. Salt retentions show that PAA/PP+ layers are defective (salt retentions <10% and high molecular weight cut-off (MWCO)), in line with the observed dewetting behavior, while PPMs based on PSS show 80% MgSO retention in combination with a low MWCO. The PSS/PP+ membranes show a Donnan-exclusion behavior with moderate MgCl retention (50%-55%) and high NaSO retention (85%-90%) indicating a high amount of negative charge present within the PPMs. The corresponding PEMs, on the other hand, are predominately positively charged with MgCl retention of 97%-98% and NaSO retention of 57%-80%. This means that the charge inside the multilayer and, thus, its separation behavior can be changed when PP+ is used instead of a polycation. When comparing the PPM membranes to the literature, similar performances are observed with other biomimetic membranes that are not based on interfacial polymerization, but these are the only ones prepared using a desired hollow fiber geometry. Combining PEMs and biomimetic approaches can, thus, lead to relevant membranes, especially adding to the versatility of both systems.
在过去几十年中,随着聚电解质多层膜(PEM)基膜和仿生膜的引入,膜领域取得了巨大进展。在这项工作中,我们将这两种有前景的体系结合起来,证明了掺入水通道蛋白的蛋白聚合物囊泡(PP+)可以通过PEM以可控方式分布,甚至可以分布在中空纤维膜的内表面。通过这种方式,使用PP+作为带正电的物质与聚阴离子聚苯乙烯4-磺酸盐(PSS)和聚丙烯酸(PAA)结合,制备了各种蛋白聚合物囊泡多层膜(PPM)。通过交替吸附聚阴离子和PP+的反射测量表明,对于PAA和PSS,都可以实现良好的层生长。然而,当通过扫描电子显微镜(SEM)对多层膜成像时,基于PAA的PPM显示出脱湿现象,而只有基于PSS的PPM内部和表面能清晰观察到囊泡结构。此外,在PPM上涂层后,膜的渗透率对于PAA/PP+降至2.6 L∙m∙h∙bar,对于PSS/PP+降至7.7 L∙m∙h∙bar。盐截留率表明,PAA/PP+层存在缺陷(盐截留率<10%且截留分子量(MWCO)高),这与观察到的脱湿行为一致,而基于PSS的PPM对MgSO4的截留率为80%且MWCO较低。PSS/PP+膜表现出唐南排斥行为,对MgCl2的截留率适中(50%-55%),对Na2SO4的截留率较高(85%-90%),表明PPM内部存在大量负电荷。另一方面,相应的PEM主要带正电,对MgCl2的截留率为97%-98%,对Na2SO4的截留率为57%-80%。这意味着当使用PP+代替聚阳离子时,多层膜内部的电荷及其分离行为会发生变化。与文献中的其他膜相比,PPM膜具有类似的性能,这些文献中的膜不是基于界面聚合制备的,但PPM膜是唯一使用所需中空纤维几何形状制备的膜。因此,将PEM和仿生方法结合起来可以制备出相关的膜,特别是增加了这两种体系的多功能性。